Trans-iron Ge, As, Se, and heavier elements in the dwarf metal-poor stars HD 19445, HD 84937, HD 94028, HD 140283, and HD 160617

Author:

Peterson R. C.ORCID,Barbuy B.ORCID,Spite M.ORCID

Abstract

Context. The spectra of unevolved metal-poor halo stars uniquely reflect the elemental abundances incorporated during the earliest Galactic epoch. Their heavy-element content is well understood as the products of neutron capture on iron-peak elements. However, for the lightest trans-iron elements with atomic number 30 <  Z <  52, they show striking abundance patterns that defy model predictions. Understanding their sources may illuminate the diverse halo, thick disk, or extragalactic origins of metal-poor stars. Aims. The primary goal is the derivation of halo dwarf abundances and their uncertainties for six trans-iron elements from UV spectra, plus optical abundances for four additional trans-Fe elements and two well-understood heavier elements. Methods. For five metal-poor dwarfs, we analyzed high-resolution UV spectra from the Hubble Space Telescope Imaging Spectrograph, supplemented by archival optical echelle spectra. Two independent analyses adopted different programs, models, and line lists, clarifying systematic errors. Results. The results from the separate UV analyses are in good agreement. The largest source of discrepancy is the placement of the UV continuum. Once rectified, the separate results agree to 0.2 dex for moderately unblended, moderately strong lines. Similar agreement is found with previous works, except where new data and line selection become important, notably our exclusion of trans-Fe lines blended by newly identifed Fe I lines. Conclusions. Improved line lists lead to low As/Ge ratios that no longer require an early arsenic enhancement. All five stars exhibit a high Mo/Ge abundance ratio, independent of Mo/Fe. The trans-Fe elements show an odd-even effect: an odd-Z element abundance is depressed relative to those of adjacent even-Z elements. Its suggested metallicity dependence is supported by previous studies of Sr-Y-Zr. Some theoretical yields show a metallicity-dependent odd-even effect, but none have predicted a constant Mo/Ge abundance ratio. Our work thus highlights the complexity of predicting the production of light trans-Fe elements in metal-poor stars.

Funder

NASA

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3