Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv

Author:

Ackley K.,Amati L.,Barbieri C.,Bauer F. E.,Benetti S.,Bernardini M. G.,Bhirombhakdi K.,Botticella M. T.,Branchesi M.,Brocato E.,Bruun S. H.,Bulla M.,Campana S.,Cappellaro E.,Castro-Tirado A. J.,Chambers K. C.,Chaty S.,Chen T.-W.,Ciolfi R.,Coleiro A.,Copperwheat C. M.,Covino S.,Cutter R.,D’Ammando F.,D’Avanzo P.,De Cesare G.,D’Elia V.,Della Valle M.,Denneau L.,De Pasquale M.,Dhillon V. S.,Dyer M. J.,Elias-Rosa N.,Evans P. A.,Eyles-Ferris R. A. J.,Fiore A.,Fraser M.,Fruchter A. S.,Fynbo J. P. U.,Galbany L.,Gall C.,Galloway D. K.,Getman F. I.,Ghirlanda G.,Gillanders J. H.,Gomboc A.,Gompertz B. P.,González-Fernández C.,González-Gaitán S.,Grado A.,Greco G.,Gromadzki M.,Groot P. J.,Gutiérrez C. P.,Heikkilä T.,Heintz K. E.,Hjorth J.,Hu Y.-D.,Huber M. E.,Inserra C.,Izzo L.,Japelj J.,Jerkstrand A.,Jin Z. P.,Jonker P. G.,Kankare E.,Kann D. A.,Kennedy M.,Kim S.,Klose S.,Kool E. C.,Kotak R.,Kuncarayakti H.,Lamb G. P.,Leloudas G.,Levan A. J.,Longo F.,Lowe T. B.,Lyman J. D.,Magnier E.,Maguire K.,Maiorano E.,Mandel I.,Mapelli M.,Mattila S.,McBrien O. R.,Melandri A.,Michałowski M. J.,Milvang-Jensen B.,Moran S.,Nicastro L.,Nicholl M.,Nicuesa Guelbenzu A.,Nuttal L.,Oates S. R.,O’Brien P. T.,Onori F.,Palazzi E.,Patricelli B.,Perego A.,Torres M. A. P.,Perley D. A.,Pian E.,Pignata G.,Piranomonte S.,Poshyachinda S.,Possenti A.,Pumo M. L.,Quirola-Vásquez J.,Ragosta F.,Ramsay G.,Rau A.,Rest A.,Reynolds T. M.,Rosetti S. S.,Rossi A.,Rosswog S.,Sabha N. B.,Sagués Carracedo A.,Salafia O. S.,Salmon L.,Salvaterra R.,Savaglio S.,Sbordone L.,Schady P.,Schipani P.,Schultz A. S. B.,Schweyer T.,Smartt S. J.,Smith K. W.,Smith M.,Sollerman J.,Srivastav S.,Stanway E. R.,Starling R. L. C.,Steeghs D.,Stratta G.,Stubbs C. W.,Tanvir N. R.,Testa V.,Thrane E.,Tonry J. L.,Turatto M.,Ulaczyk K.,van der Horst A. J.,Vergani S. D.,Walton N. A.,Watson D.,Wiersema K.,Wiik K.,Wyrzykowski Ł.,Yang S.,Yi S.-X.,Young D. R.

Abstract

Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS. Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger. Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency – a 50% (90%) credible area of 5 deg2 (23 deg2) – despite the relatively large distance of 267 ± 52 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups. Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS–BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r ∼ 22 (resp. K ∼ 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total ∼50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M ≳ 0.1 M to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger. Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3