Following the TraCS of exoplanets with Pan-Planets: Wendelstein-1b and Wendelstein-2b

Author:

Obermeier C.,Steuer J.,Kellermann H.,Saglia R. P.,Henning Th.,Riffeser A.,Hopp U.,Stefansson G.,Cañas C.,Ninan J.,Mahadevan S.,Isaacson H.,Howard A. W.,Livingston J.,Koppenhoefer J.,Bender R.

Abstract

Hot Jupiters seem to get rarer with decreasing stellar mass. The goal of the Pan-Planets transit survey was the detection of such planets and a statistical characterization of their frequency. Here, we announce the discovery and validation of two planets found in that survey, Wendelstein-1b and Wendelstein-2b, which are two short-period hot Jupiters that orbit late K host stars. We validated them both by the traditional method of radial velocity measurements with the HIgh Resolution Echelle Spectrometer and the Habitable-zone Planet Finder instruments and then by their Transit Color Signature (TraCS). We observed the targets in the wavelength range of 4000−24 000 Å and performed a simultaneous multiband transit fit and additionally determined their thermal emission via secondary eclipse observations. Wendelstein-1b is a hot Jupiter with a radius of 1.0314−0.0061+0.0061 RJ and mass of 0.592−0.129+0.0165 MJ, orbiting a K7V dwarf star at a period of 2.66 d, and has an estimated surface temperature of about 1727−90+78 K. Wendelstein-2b is a hot Jupiter with a radius of 1.1592−0.0210+0.0204 RJ and a mass of 0.731−0.311+0.0541 MJ, orbiting a K6V dwarf star at a period of 1.75 d, and has an estimated surface temperature of about 1852−140+120 K. With this, we demonstrate that multiband photometry is an effective way of validating transiting exoplanets, in particular for fainter targets since radial velocity follow-up becomes more and more costly for those targets.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The ℛ project;Astronomy & Astrophysics;2024-09

2. A detailed analysis of the Gl 486 planetary system;Astronomy & Astrophysics;2022-09

3. TESS Transit Timing of Hundreds of Hot Jupiters;The Astrophysical Journal Supplement Series;2022-04-01

4. Confirming transiting exoplanets with the Fraunhofer Telescope Wendelstein;Techniques and Instrumentation for Detection of Exoplanets X;2021-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3