Perfectly parallel cosmological simulations using spatial comoving Lagrangian acceleration

Author:

Leclercq F.ORCID,Faure B.ORCID,Lavaux G.ORCID,Wandelt B. D.ORCID,Jaffe A. H.ORCID,Heavens A. F.ORCID,Percival W. J.ORCID

Abstract

Context.Existing cosmological simulation methods lack a high degree of parallelism due to the long-range nature of the gravitational force, which limits the size of simulations that can be run at high resolution.Aims.To solve this problem, we propose a new, perfectly parallel approach to simulate cosmic structure formation, which is based on the spatial COmoving Lagrangian Acceleration (sCOLA) framework.Methods.Building upon a hybrid analytical and numerical description of particles’ trajectories, our algorithm allows for an efficient tiling of a cosmological volume, where the dynamics within each tile is computed independently. As a consequence, the degree of parallelism is equal to the number of tiles. We optimised the accuracy of sCOLA through the use of a buffer region around tiles and of appropriate Dirichlet boundary conditions around sCOLA boxes.Results.As a result, we show that cosmological simulations at the degree of accuracy required for the analysis of the next generation of surveys can be run in drastically reduced wall-clock times and with very low memory requirements.Conclusions.The perfect scalability of our algorithm unlocks profoundly new possibilities for computing larger cosmological simulations at high resolution, taking advantage of a variety of hardware architectures.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sesame: A power spectrum emulator pipeline for beyond-ΛCDM models;Astronomy & Astrophysics;2024-05

2. Bayesian control variates for optimal covariance estimation with pairs of simulations and surrogates;Monthly Notices of the Royal Astronomical Society;2022-07-04

3. Large-scale dark matter simulations;Living Reviews in Computational Astrophysics;2022-02-11

4. CARPool Covariance: Fast, unbiased covariance estimation for large-scale structure observables;Monthly Notices of the Royal Astronomical Society;2021-10-25

5. Measuring the tidal response of structure formation: anisotropic separate universe simulations using treepm;Monthly Notices of the Royal Astronomical Society;2021-02-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3