CARPool Covariance: Fast, unbiased covariance estimation for large-scale structure observables

Author:

Chartier Nicolas12,Wandelt Benjamin D23

Affiliation:

1. Laboratoire de Physique de l’École Normale Supérieure, ENS, Universite PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France

2. Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France

3. Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

Abstract

Abstract The covariance matrix $\boldsymbol{\Sigma }$ of non-linear clustering statistics that are measured in current and upcoming surveys is of fundamental interest for comparing cosmological theory and data and a crucial ingredient for the likelihood approximations underlying widely used parameter inference and forecasting methods. The extreme number of simulations needed to estimate $\boldsymbol{\Sigma }$ to sufficient accuracy poses a severe challenge. Approximating $\boldsymbol{\Sigma }$ using inexpensive but biased surrogates introduces model error with respect to full simulations, especially in the non-linear regime of structure growth. To address this problem we develop a matrix generalization of Convergence Acceleration by Regression and Pooling (CARPool) to combine a small number of simulations with fast surrogates and obtain low-noise estimates of $\boldsymbol{\Sigma }$ that are unbiased by construction. Our numerical examples use CARPool to combine GADGET-III N-body simulations with fast surrogates computed using COmoving Lagrangian Acceleration (COLA). Even at the challenging redshift z = 0.5, we find variance reductions of at least $\mathcal {O}(10^1)$ and up to $\mathcal {O}(10^4)$ for the elements of the matter power spectrum covariance matrix on scales 8.9 × 10−3 < kmax < 1.0 hMpc−1. We demonstrate comparable performance for the covariance of the matter bispectrum, the matter correlation function and probability density function of the matter density field. We compare eigenvalues, likelihoods, and Fisher matrices computed using the CARPool covariance estimate with the standard sample covariance and generally find considerable improvement except in cases where $\boldsymbol{\Sigma }$ is severely ill-conditioned.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3