Seeds of Life in Space (SOLIS)

Author:

Spezzano S.ORCID,Codella C.,Podio L.ORCID,Ceccarelli C.ORCID,Caselli P.ORCID,Neri R.ORCID,López-Sepulcre A.

Abstract

Context. Contrary to what is expected from models of Galactic chemical evolution, the isotopic fractionation of silicon (Si) in the Galaxy has recently been found to be constant. This finding calls for new observations, also at core scales, to re-evaluate the fractionation of Si. Aims. L1157-B1 is one of the outflow-shocked regions along the blue-shifted outflow that is driven by the Class 0 protostar L1157-mm. It is an ideal laboratory for studying the material ejected from the grains on very short timescales because its chemical composition is representative of the composition of the grains. Methods. We imaged 28SiO, 29SiO, and 30SiO J = 2–1 emission towards L1157-B1 and B0 with the NOrthern Extended Millimeter Array (NOEMA) interferometer as part of the Seeds of Life in Space (SOLIS) large project. We present here a study of the isotopic fractionation of SiO towards L1157-B1. Furthermore, we used the high spectral resolution observations on the main isotopologue, 28SiO, to study the jet impact on the dense gas. We here also present single-dish observations obtained with the IRAM 30 m telescope and Herschel-HIFI. We carried out a non-local thermal equilibrium analysis using a large velocity gradient code to model the single-dish observations. Results. From our observations we can show that (i) the 2–1 transition of the main isotopologue is optically thick in L1157-B1 even at high velocities, and (ii) the [29SiO/30SiO] ratio is constant across the source, and consistent with the solar value of 1.5. Conclusions. We report the first isotopic fractionation maps of SiO in a shocked region and show the absence of a mass-dependent fractionation in 29Si and 30Si across L1157-B1. A high-velocity bullet in 28SiO has been identified, showing the signature of a jet impacting on the dense gas. With the dataset presented in this paper, both interferometric and single-dish, we were able to study the gas that is shocked at the B1a position and its surrounding gas in great detail.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3