Shaken or Stirred: The Diffuse Interstellar Medium with Exceptionally High SiO Abundance

Author:

Rybarczyk Daniel R.ORCID,Stanimirović SnežanaORCID,Gusdorf AntoineORCID

Abstract

Abstract Interstellar shocks, a key element of stellar feedback processes, shape the structure of the interstellar medium (ISM) and are essential for the chemistry, thermodynamics, and kinematics of interstellar gas. Powerful, high-velocity shocks are driven by stellar winds, young supernova explosions, more evolved supernova remnants, cloud–cloud collisions, and protostellar outflows, whereas the existence and origin of much-lower-velocity shocks (≲10 km s−1) are not understood. Direct observational evidence for interstellar shocks in diffuse and translucent ISM environments has been especially lacking. We present the most sensitive survey to date of SiO—often considered an unambiguous tracer of interstellar shocks—in absorption, obtained with the Northern Extended Millimeter Array interferometer. We detect SiO in five of eight directions probing diffuse and translucent environments without ongoing star formation. Our results demonstrate that SiO formation in the diffuse ISM (i.e., in the absence of significant star formation and stellar feedback) is more widespread and effective than previously reported. The observed SiO line widths are all ≲4 km s−1, excluding high-velocity shocks as a formation mechanism. Yet, the SiO abundances we detect are mostly 1–2 orders of magnitude higher than those typically assumed in quiescent environments and are often accompanied by other molecular transitions whose column densities cannot be explained with UV-dominated chemical models. Our results challenge the traditional view of SiO production via stellar feedback sources and emphasize the need for observational constraints on the distribution of Si in the gas phase and grain mantles, which are crucial for understanding the physics of grain processing and the diffuse interstellar chemistry.

Funder

National Science Foundation

National Aeronautics and Space Administration

National Radio Astronomy Observatory

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3