Spatially resolved measurements of the solar photospheric oxygen abundance

Author:

Cubas Armas M.ORCID,Asensio Ramos A.ORCID,Socas-Navarro H.ORCID

Abstract

Aims. We report the results of a novel determination of the solar oxygen abundance using spatially resolved observations and inversions. We seek to derive the photospheric solar oxygen abundance with a method that is robust against uncertainties in the model atmosphere. Methods. We use observations with spatial resolution obtained at the Vacuum Tower Telescope to derive the oxygen abundance at 40 different spatial positions in granules and intergranular lanes. We first obtain a model for each location by inverting the Fe I lines with the NICOLE inversion code. These models are then integrated into a hierarchical Bayesian model that is used to infer the most probable value for the oxygen abundance that is compatible with all the observations. The abundance is derived from the [O I] forbidden line at 6300 Å taking into consideration all possible nuisance parameters that can affect the abundance. Results. Our results show good agreement in the inferred oxygen abundance for all the pixels analyzed, demonstrating the robustness of the analysis against possible systematic errors in the model. We find a slightly higher oxygen abundance in granules than in intergranular lanes when treated separately (log(ϵO) = 8.83 ± 0.02 vs. log(ϵO) = 8.76 ± 0.02), which is a difference of approximately 2-σ. This tension suggests that some systematic errors in the model or the radiative transfer still exist but are small. When taking all pixels together, we obtain an oxygen abundance of log(ϵO) = 8.80 ± 0.03, which is compatible with both granules and lanes within 1-σ. The spread of results is due to both systematic and random errors.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-Dimensional Nonlocal Thermodynamic Equilibrium Abundance Analyses of Late-Type Stars;Annual Review of Astronomy and Astrophysics;2024-09-13

2. Extended atomic data for oxygen abundance analyses;Astronomy & Astrophysics;2023-05-31

3. Solar oxygen abundance using SST/CRISP center-to-limb observations of the O I 7772 Å line;Astronomy & Astrophysics;2023-04

4. The Future of Solar Neutrinos;Annual Review of Nuclear and Particle Science;2021-09-21

5. The chemical make-up of the Sun: A 2020 vision;Astronomy & Astrophysics;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3