Extended atomic data for oxygen abundance analyses

Author:

Li W.ORCID,Jönsson P.,Amarsi A. M.,Li M. C.,Grumer J.

Abstract

As the most abundant element in the universe after hydrogen and helium, oxygen plays a key role in planetary, stellar, and galactic astrophysics. Its abundance is especially influential in terms of stellar structure and evolution, and as the dominant opacity contributor at the base of the Sun’s convection zone, it is central to the discussion on the solar modelling problem. However, abundance analyses require complete and reliable sets of atomic data. We present extensive atomic data for O I by using the multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction methods. We provide the lifetimes and transition probabilities for radiative electric dipole transitions and we compare them with results from previous calculations and available measurements. The accuracy of the computed transition rates is evaluated by the differences between the transition rates in Babushkin and Coulomb gauges, as well as via a cancellation factor analysis. Out of the 989 computed transitions in this work, 205 are assigned to the accuracy classes AA-B, that is, with uncertainties smaller than 10%, following the criteria defined by the Atomic Spectra Database from the National Institute of Standards and Technology. We discuss the influence of the new log(gf) values on the solar oxygen abundance, ultimately advocating for log єO = 8.70 ± 0.04.

Funder

Swedish Research Council

Guangdong Basic and Applied Basic Research Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extended calculations of energy levels and transition rates for Yb LVII;Zeitschrift für Naturforschung A;2024-01-04

2. Interface of equation of state, atomic data, and opacities in the solar problem;Monthly Notices of the Royal Astronomical Society: Letters;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3