Revised planet brightness temperatures using the Planck/LFI 2018 data release

Author:

Maris MicheleORCID,Romelli ErikORCID,Tomasi MaurizioORCID,Gregorio AnnaORCID,Sandri MauraORCID,Galeotta SamueleORCID,Tavagnacco DanieleORCID,Frailis MarcoORCID,Maggio GianmarcoORCID,Zacchei AndreaORCID

Abstract

Aims. We present new estimates of the brightness temperatures of Jupiter, Saturn, Uranus, and Neptune based on the measurements carried in 2009–2013 by Planck/LFI at 30, 44, and 70 GHz and released to the public in 2018. This work extends the results presented in the 2013 and 2015 Planck/LFI Calibration Papers, based on the data acquired in 2009–2011. Methods. Planck observed each planet up to eight times during the nominal mission. We processed time-ordered data from the 22 LFI radiometers to derive planet antenna temperatures for each planet and transit. We accounted for the beam shape, radiometer bandpasses, and several systematic effects. We compared our results with the results from the ninth year of WMAP, Planck/HFI observations, and existing data and models for planetary microwave emissivity. Results. For Jupiter, we obtain Tb = 144.9, 159.8, 170.5 K (± 0.2 K at 1σ, with temperatures expressed using the Rayleigh-Jeans scale) at 30, 44 and 70 GHz, respectively, or equivalently a band averaged Planck temperature Tb(ba) = 144.7, 160.3, 171.2 K in good agreement with WMAP and existing models. A slight excess at 30 GHz with respect to models is interpreted as an effect of synchrotron emission. Our measures for Saturn agree with the results from WMAP for rings Tb = 9.2 ± 1.4, 12.6 ± 2.3, 16.2 ± 0.8 K, while for the disc we obtain Tb = 140.0 ± 1.4, 147.2 ± 1.2, 150.2 ± 0.4 K, or equivalently a Tb(ba) = 139.7, 147.8, 151.0 K. Our measures for Uranus (Tb = 152 ± 6, 145 ± 3, 132.0 ± 2 K, or Tb(ba) = 152, 145, 133 K) and Neptune (Tb = 154 ± 11, 148 ± 9, 128 ± 3 K, or Tb(ba) = 154, 149, 128 K) agree closely with WMAP and previous data in literature.

Funder

Istituto Nazionale di Astrofisica

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3