The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states

Author:

De Marco B.,Zdziarski A. A.,Ponti G.,Migliori G.,Belloni T. M.,Segovia Otero A.,Dziełak M. A.,Lai E. V.

Abstract

Context. We present a systematic X-ray spectral-timing study of the recently discovered, exceptionally bright black hole X-ray binary system MAXI J1820+070. Our analysis focuses on the first part of the 2018 outburst, covering the rise throughout the hard state, the bright hard and hard-intermediate states, and the transition to the soft-intermediate state. Aims. We address the issue of constraining the geometry of the innermost accretion flow and its evolution throughout an outburst. Methods. We employed two independent X-ray spectral-timing methods applied to archival NICER data of MAXI J1820+070. We first identified and tracked the evolution of a characteristic frequency of soft X-ray thermal reverberation lags (lags of the thermally reprocessed disc emission after the irradiation of variable hard X-ray photons). This frequency is sensitive to intrinsic changes in the relative distance between the X-ray source and the disc. Then, we studied the spectral evolution of the quasi-thermal component responsible for the observed thermal reverberation lags. We did so by analysing high-frequency covariance spectra, which single out spectral components that vary in a linearly correlated way on the shortest sampled timescales and are thus produced in the innermost regions of the accretion flow. Results. The frequency of thermal reverberation lags steadily increases throughout most of the outburst, implying that the relative distance between the X-ray source and the disc decreases as the source softens. However, near transition this evolution breaks, showing a sudden increase (decrease) in lag amplitude (frequency). On the other hand, the temperature of the quasi-thermal component in covariance spectra, due to disc irradiation and responsible for the observed soft reverberation lags, consistently increases throughout all the analysed observations. Conclusions. This study proposes an alternative interpretation to the recently proposed contracting corona scenario. Assuming a constant height for the X-ray source, the steady increase in the reverberation lag frequency and in the irradiated disc temperature in high-frequency covariance spectra can be explained in terms of a decrease in the disc inner radius as the source softens. The behaviour of thermal reverberation lags near transition might be related to the relativistic plasma ejections detected at radio wavelengths, suggesting a causal connection between the two phenomena. Throughout most of the hard and hard-intermediate state, the disc is consistent with being truncated (with an inner radius Rin ≳ 10 Rg), reaching close to the innermost stable circular orbit only near transition.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3