Fitting strategies of accretion column models and application to the broadband spectrum of Cen X-3

Author:

Thalhammer PhilippORCID,Bissinger MatthiasORCID,Ballhausen RalfORCID,Pottschmidt KatjaORCID,Wolff Michael T.,Stierhof JakobORCID,Sokolova-Lapa EkaterinaORCID,Fürst Felix,Malacaria ChristianORCID,Gottlieb AmyORCID,Marcu-Cheatham Diana M.,Becker Peter A.,Wilms JörnORCID

Abstract

Due to the complexity of modeling the radiative transfer inside the accretion columns of neutron star binaries, their X-ray spectra are still commonly described with phenomenological models, for example, a cutoff power law. While the behavior of these models is well understood and they allow for a comparison of different sources and studying source behavior, the extent to which the underlying physics can be derived from the model parameters is very limited. During recent years, several physically motivated spectral models have been developed to overcome these limitations. Their application, however, is generally computationally much more expensive and they require a high number of parameters which are difficult to constrain. Previous works have presented an analytical solution to the radiative transfer equation inside the accretion column assuming a velocity profile that is linear in the optical depth. An implementation of this solution that is both fast and accurate enough to be fitted to observed spectra is available as a model in XSPEC. The main difficulty of this implementation is that some solutions violate energy conservation and therefore have to be rejected by the user. We propose a novel fitting strategy that ensures energy conservation during the χ2-minimization which simplifies the application of the model considerably. We demonstrate this approach as well as a study of possible parameter degeneracies with a comprehensive Markov-chain Monte Carlo analysis of the complete parameter space for a combined NuSTAR and Swift/XRT dataset of Cen X-3. The derived accretion-flow structure features a small column radius of ∼63 m and a spectrum dominated by bulk-Comptonization of bremsstrahlung seed photons, in agreement with previous studies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3