Impact of common envelope development criteria on the formation of LIGO/Virgo sources

Author:

Olejak A.ORCID,Belczynski K.,Ivanova N.ORCID

Abstract

The treatment and criteria for development of unstable Roche lobe overflow (RLOF) that leads to the common envelope (CE) phase have hindered the area of evolutionary predictions for decades. In particular, the formation of black hole-black hole (BH-BH), black hole-neutron star (BH-NS), and neutron star-neutron star (NS-NS) merging binaries depends sensitively on the CE phase in classical isolated binary evolution model. All these mergers are now reported as LIGO/Virgo sources or source candidates. CE is even considered by some as a mandatory phase in the formation of BH-BH, BH-NS, or NS-NS mergers in binary evolution models. At the moment, there is no full first-principles model for the development of the CE. We employed the StarTrack population synthesis code to test the current advancements in studies on the stability of RLOF for massive donors to assess their effect on the LIGO/Virgo source population. In particular, we allowed for more restrictive CE development criteria for massive donors (M >  18 M). We also tested a modified condition for switching between different types of stable mass transfer and between the thermal or nuclear timescale. The implemented modifications significantly influence the basic properties of merging double compact objects, sometimes in non-intuitive ways. For one of the tested models, with restricted CE development criteria, the local merger rate density for BH-BH systems increased by a factor of 2–3 due to the emergence of a new dominant formation scenario without any CE phase. We find that the changes in highly uncertain assumptions on RLOF physics may significantly affect: (i) the local merger rate density; (ii) shape of the mass and mass ratio distributions; and (iii) dominant evolutionary formation (with and without CE) scenarios of LIGO/Virgo sources. Our results demonstrate that without sufficiently strong constraints on RLOF physics, it is not possible to draw fully reliable conclusions about the population of double compact object systems based on population synthesis studies.

Funder

Polish National Sci-ence Center

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3