Improving the astrometric solution of the Hyper Suprime-Cam with anisotropic Gaussian processes

Author:

Léget P.-F.,Astier P.,Regnault N.,Jarvis M.,Antilogus P.,Roodman A.,Rubin D.,Saunders C.

Abstract

Context. We study astrometric residuals from a simultaneous fit of Hyper Suprime-Cam images. Aims. We aim to characterize these residuals and study the extent to which they are dominated by atmospheric contributions for bright sources. Methods. We used Gaussian process interpolation with a correlation function (kernel) measured from the data to smooth and correct the observed astrometric residual field. Results. We find that a Gaussian process interpolation with a von Kármán kernel allows us to reduce the covariances of astrometric residuals for nearby sources by about one order of magnitude, from 30 mas2 to 3 mas2 at angular scales of ∼1 arcmin. This also allows us to halve the rms residuals. Those reductions using Gaussian process interpolation are similar to recent result published with the Dark Energy Survey dataset. We are then able to detect the small static astrometric residuals due to the Hyper Suprime-Cam sensors effects. We discuss how the Gaussian process interpolation of astrometric residuals impacts galaxy shape measurements, particularly in the context of cosmic shear analyses at the Rubin Observatory Legacy Survey of Space and Time.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference28 articles.

1. Fast Direct Methods for Gaussian Processes

2. Astier P. 2012, Rep. Prog. Phys., 75

3. Trans-Neptunian Objects Found in the First Four Years of the Dark Energy Survey

4. Bernstein G. M., Armstrong R., Plazas A. A., et al. 2017, PASP, 129

5. Bertin E. 2006, in Automatic Astrometric and Photometric Calibration with SCAMP, eds. Gabriel C., Arviset C., Ponz D., & Enrique S., ASP Conf. Ser., 351, 112

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photometry on Structured Backgrounds: Local Pixel-wise Infilling by Regression;The Astrophysical Journal;2022-07-01

2. OUP accepted manuscript;Publications of the Astronomical Society of Japan;2022

3. Gaussian Process Classification for Galaxy Blend Identification in LSST;The Astrophysical Journal;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3