Abstract
Abstract
A significant fraction of observed galaxies in the Rubin Observatory Legacy Survey of Space and Time (LSST) will overlap at least one other galaxy along the same line of sight, in a so-called “blend.” The current standard method of assessing blend likelihood in LSST images relies on counting up the number of intensity peaks in the smoothed image of a blend candidate, but the reliability of this procedure has not yet been comprehensively studied. Here we construct a realistic distribution of blended and unblended galaxies through high-fidelity simulations of LSST-like images, and from this we examine the blend classification accuracy of the standard peak-finding method. Furthermore, we develop a novel Gaussian process blend classifier model, and show that this classifier is competitive with both the peak finding method as well as with a convolutional neural network model. Finally, whereas the peak-finding method does not naturally assign probabilities to its classification estimates, the Gaussian process model does, and we show that the Gaussian process classification probabilities are generally reliable.
Funder
DOE ∣ NNSA ∣ LDRD ∣ Lawrence Livermore National Laboratory
DOE ∣ SC ∣ High Energy Physics
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献