Beyond the dips of V807 Tau, a spectropolarimetric study of a dipper’s magnetosphere

Author:

Pouilly K.ORCID,Bouvier J.,Alecian E.,Alencar S. H. P.,Cody A.-M.,Donati J.-F.,Grankin K.,Rebull L.,Folsom C. P.

Abstract

Context. The so-called dippers are pre-main-sequence objects that accrete material from their circumstellar disks through the stellar magnetosphere. Their unique type of variability allows us to probe the magnetic star-disk interaction processes in young stellar objects. Aims. We aim to characterize the magnetospheric accretion process in the young stellar object V807 Tau, one of the most stable dippers revealed by K2 in the Taurus star forming region. Methods. We performed photometric and spectropolarimetric follow-up observations of this system with CFHT/ESPaDOnS in order to investigate the variability of the system over several rotational periods. Results. We derive a 4.38 day period from the K2 dipper light curve. This period is also seen in the radial velocity variations, which we ascribe to spot modulation. The slightly redshifted narrow component of the He I 5876 Å line as well as the high velocity red wing of the Hβ and Hγ emission line profiles also vary in intensity with the same periodicity. The former traces the accretion shock at the stellar surface, and the latter is a signature of an accretion funnel flow crossing the line of sight. We derive a surface brightness map and the topology of the surface magnetic field from the modeling of Stokes I and V profiles, respectively, for photospheric lines and for the He I emission line. The latter reveals a bright spot at the stellar surface, located at a latitude of 60°, and a maximum field strength of ∼2 kG at this location. The topology of the magnetic field at the stellar surface is dominated by a dipolar component inclined by about 40° onto the spin axis. Variable blueshifted absorption components seen in the Balmer line profiles suggest episodic outflows. Despite of its clear and stable dipper behavior, we derive a relatively low inclination of 40° to 50° for this system, which calls question the origin of the dips. The low inclination we infer is also consistent with the absence of deep inverse P Cygni components in the line profiles. Conclusions. We conclude that magnetospheric accretion is ongoing in V807 Tau, taking place through non-axisymmetric accretion funnel flows controlled by a strong, tilted, and mainly dipolar magnetic topology. Whether an inner disk warp resulting from this process can account for the dipper character of this source remains to be seen, given the low inclination of the system.

Funder

ERC-SPIDI

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3