Star-disk interactions in the strongly accreting T Tauri star S CrA N

Author:

Nowacki H.ORCID,Alecian E.ORCID,Perraut K.ORCID,Zaire B.ORCID,Folsom C. P.ORCID,Pouilly K.ORCID,Bouvier J.ORCID,Manick R.ORCID,Pantolmos G.ORCID,Sousa A. P.ORCID,Dougados C.ORCID,Hussain G. A. J,Alencar S. H. P.,Le Bouquin J. B.ORCID

Abstract

Context. Classical T Tauri stars are thought to accrete material from their surrounding protoplanetary disks through funnel flows along their magnetic field lines. The classical T Tauri stars with high accretion rates (∼10−7 M yr−1) are ideal targets for testing this magnetospheric accretion scenario in a sustained regime. Aims. We constrained the accretion-ejection phenomena around the strongly accreting northern component of the S CrA young binary system (S CrA N) by deriving its magnetic field topology and its magnetospheric properties, and by detecting ejection signatures, if any. Methods. We led a two-week observing campaign on S CrA N with the ESPaDOnS optical spectropolarimeter at the Canada-France-Hawaii Telescope. We recorded 12 Stokes I and V spectra over 14 nights. We computed the corresponding least-squares deconvolution (LSD) profiles of the photospheric lines and performed Zeeman-Doppler imaging (ZDI). We analyzed the kinematics of noticeable emission lines, namely He I λ5876 and the first four lines of the Balmer series, which are known to trace the accretion process. Results. We found that S CrA N is a low-mass (0.8 M) young (∼1 Myr) and fully convective object exhibiting strong and variable veiling (with a mean value of 7 ± 2), which suggests that the star is in a strong accretion regime. These findings could indicate a stellar evolutionary stage between Class I and Class II for S CrA N. We reconstructed an axisymmetric large-scale magnetic field (∼70% of the total energy) that is primarily located in the dipolar component, but has significant higher poloidal orders. From the narrow emission component radial velocity curve of He I λ5876, we derived a stellar rotation period of P* = 7.3 ± 0.2 days. We found a magnetic truncation radius of ∼2 R* which is significantly closer to the star than the corotation radius of ∼6 R*, suggesting that S CrA N is in an unstable accretion regime. That the truncation radius is quite smaller than the size of the Brγ line emitting region, as measured with the GRAVITY interferometer (∼8 R*), supports the presence of outflows, which is nicely corroborated by the line profiles presented in this work. Conclusions. The findings from spectropolarimetry are complementary to those provided by optical long-baseline interferometry, allowing us to construct a coherent view of the innermost regions of a young, strongly accreting star. The strong and complex magnetic field reconstructed for S CrA N is inconsistent with the observed magnetic signatures of the emission lines associated with the postshock region, however. We recommend a multitechnique synchronized campaign of several days to place more constrains on a system that varies on a timescale of about one day.

Funder

ERC

ANR

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference82 articles.

1. X-shooter spectroscopy of young stellar objects

2. GIARPS High-resolution Observations of T Tauri stars (GHOsT)

3. Accretion dynamics in the classical T Tauri star V2129 Ophiuchi

4. Inner disk structure of the classical T Tauri star LkCa 15

5. Alexander R., Pascucci I., Andrews S., Armitage P., & Cieza L. 2014, in Protostars and Planets VI, eds. Beuther H., Klessen R. S., Dullemond C. P., & Henning T., 475

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3