Star-disk interaction in the T Tauri star V2129 Ophiuchi: An evolving accretion-ejection structure

Author:

Sousa A. P.,Bouvier J.,Alencar S. H. P.,Donati J.-F.,Alecian E.,Roquette J.,Perraut K.,Dougados C.,Carmona A.,Covino S.,Fugazza D.,Molinari E.,Moutou C.,Santerne A.,Grankin K.,Artigau É.,Delfosse X.,Hebrard G.,

Abstract

Context. Classical T Tauri stars are young low-mass systems still accreting material from their disks. These systems are dynamic on timescales of hours to years. The observed variability can help us infer the physical processes that occur in the circumstellar environment. Aims. In this work, we aim at understanding the dynamics of the magnetic interaction between the star and the inner accretion disk in young stellar objects. We present the case of the young stellar system V2129 Oph, which is a well-known T Tauri star with a K5 spectral type that is located in the ρ Oph star formation region at a distance of 130 ± 1 pc. Methods. We performed a time series analysis of this star using high-resolution spectroscopic data at optical wavelengths from CFHT/ESPaDOnS and ESO/HARPS and at infrared wavelengths from CFHT/SPIRou. We also obtained simultaneous photometry from REM and ASAS-SN. The new data sets allowed us to characterize the accretion-ejection structure in this system and to investigate its evolution over a timescale of a decade via comparisons to previous observational campaigns. Results. We measure radial velocity variations and recover a stellar rotation period of 6.53 days. However, we do not recover the stellar rotation period in the variability of various circumstellar lines, such as Hα and Hβ in the optical or HeI 10830 Å and Paβ in the infrared. Instead, we show that the optical and infrared line profile variations are consistent with a magnetospheric accretion scenario that shows variability with a period of about 6.0 days, shorter than the stellar rotation period. Additionally, we find a period of 8.5 days in Hα and Hβ lines, probably due to a structure located beyond the corotation radius, at a distance of ∼0.09 au. We investigate whether this could be accounted for by a wind component, twisted or multiple accretion funnel flows, or an external disturbance in the inner disk. Conclusions. We conclude that the dynamics of the accretion-ejection process can vary significantly on a timescale of just a few years in this source, presumably reflecting the evolving magnetic field topology at the stellar surface.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long-period modulation of the classical T Tauri star CI Tau;Astronomy & Astrophysics;2024-06

2. Pre-main Sequence: Accretion and Outflows;Handbook of X-ray and Gamma-ray Astrophysics;2024

3. Star-disk interactions in the strongly accreting T Tauri star S CrA N;Astronomy & Astrophysics;2023-10

4. Monitoring Hα Emission from the Wide-orbit Brown-dwarf Companion FU Tau B;The Astronomical Journal;2023-09-05

5. Density streams in the disc winds of Classical T Tauri stars;Monthly Notices of the Royal Astronomical Society;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3