The GAPS Programme at TNG

Author:

Borsa F.,Lanza A. F.,Raspantini I.,Rainer M.,Fossati L.,Brogi M.,Di Mauro M. P.,Gratton R.,Pino L.,Benatti S.,Bignamini A.,Bonomo A. S.,Claudi R.,Esposito M.,Frustagli G.,Maggio A.,Maldonado J.,Mancini L.,Micela G.,Nascimbeni V.,Poretti E.,Scandariato G.,Sicilia D.,Sozzetti A.,Boschin W.,Cosentino R.,Covino E.,Desidera S.,Di Fabrizio L.,Fiorenzano A. F. M.,Harutyunyan A.,Knapic C.,Molinari E.,Pagano I.,Pedani M.,Piotto G.

Abstract

Context. Giant planets in short-period orbits around bright stars represent optimal candidates for atmospheric and dynamical studies of exoplanetary systems. Aims. We aim to analyse four transits of WASP-33b observed with the optical high-resolution HARPS-N spectrograph to confirm its nodal precession, study its atmosphere, and investigate the presence of star-planet interactions. Methods. We extracted the mean line profiles of the spectra using the least-squares deconvolution method, and we analysed the Doppler shadow and the radial velocities. We also derived the transmission spectrum of the planet, correcting it for the stellar contamination due to rotation, centre-to-limb variations, and pulsations. Results. We confirm the previously discovered nodal precession of WASP-33b, almost doubling the time coverage of the inclination and projected spin-orbit angle variation. We find that the projected obliquity reached a minimum in 2011, and we used this constraint to derive the geometry of the system, and in particular its obliquity at that epoch (ϵ = 113.99° ± 0.22°) and the inclination of the stellar spin axis (is = 90.11° ± 0.12°). We also derived the gravitational quadrupole moment of the star J2 = (6.73 ± 0.22) × 10−5, which we find to be in close agreement with the theoretically predicted value. Small systematics errors are computed by shifting the date of the minimum projected obliquity. We present detections of Hα and Hβ absorption in the atmosphere of the planet, with a contrast almost twice as small as that previously detected in the literature. We also find evidence for the presence of a pre-transit signal, which repeats in all four analysed transits and should thus be related to the planet. The most likely explanation lies in a possible excitation of a stellar pulsation mode by the presence of the planetary companion. Conclusions. A future common analysis of all available datasets in the literature will help shed light on the possibility that the observed Balmer lines’ transit depth variations are related to stellar activity and pulsation, and to set constraints on the planetary temperature–pressure structure and thus on the energetics possibly driving atmospheric escape. A complete orbital phase coverage of WASP-33b with high-resolution spectroscopic (and spectro-polarimetric) observations could help us to understand the nature of the pre-transit signal.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the ultra-hot Jupiter WASP-178b;Astronomy & Astrophysics;2024-08

2. Evidence for Nightside Water Emission Found in Transit of Ultra-hot Jupiter WASP-33 b;The Astrophysical Journal Letters;2024-08-01

3. The GAPS Programme at TNG;Astronomy & Astrophysics;2024-07

4. High-resolution Transmission Spectroscopy of Ultrahot Jupiter WASP–33b with NEID;The Astronomical Journal;2023-12-28

5. Dynamics and clouds in planetary atmospheres from telescopic observations;The Astronomy and Astrophysics Review;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3