Evidence for Nightside Water Emission Found in Transit of Ultra-hot Jupiter WASP-33 b

Author:

Yang YuanhengORCID,Chen GuoORCID,Yan FeiORCID,Tan XianyuORCID,Ji JianghuiORCID

Abstract

Abstract To date, the dayside thermal structure of ultra-hot Jupiters (UHJs) is generally considered to be inverted, but their nightside thermal structure has been less explored. Here, we explore the impact of nightside thermal emission on high-resolution infrared transmission spectroscopy, which should not be neglected, especially for UHJs. We present a general equation for the high-resolution transmission spectrum that includes planetary nightside thermal emission. This provides a new way to infer the thermal structure of the planetary nightside with high-resolution transmission spectroscopy. Using the cross-correlation technique, we find evidence for the presence of an H2O emission signature on the UHJ WASP-33 b during the transit, indicating an inverted temperature structure on its nightside. Such a result suggests a stronger heat transport through the circulation than currently expected. An alternative explanation is that the rotating visible hemisphere during transit leads to the potential contribution of the limb and dayside atmospheres to the detected emission signature. In the future, the combination of high-resolution, full-phase-curve spectroscopic observations and general circulation models will hopefully solve this puzzle and provide a complete picture of the three-dimensional nature of the chemistry, circulation, and thermal structure of UHJs.

Funder

MOST ∣ National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

CAS | Bureau of Frontier Sciences and Education, Chinese Academy of Sciences:

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3