Euclid preparation

Author:

,Gabarra L.,Mancini C.,Rodriguez Muñoz L.,Rodighiero G.,Sirignano C.,Scodeggio M.,Talia M.,Dusini S.,Gillard W.,Granett B. R.,Maiorano E.,Moresco M.,Paganin L.,Palazzi E.,Pozzetti L.,Renzi A.,Rossetti E.,Vergani D.,Allevato V.,Bisigello L.,Castignani G.,De Caro B.,Fumana M.,Ganga K.,Garilli B.,Hirschmann M.,La Franca F.,Laigle C.,Passalacqua F.,Schirmer M.,Stanco L.,Troja A.,Yung L. Y. A.,Zamorani G.,Zoubian J.,Anselmi S.,Oppizzi F.,Verza G.,Aghanim N.,Amara A.,Auricchio N.,Baldi M.,Bender R.,Bodendorf C.,Bonino D.,Branchini E.,Brescia M.,Brinchmann J.,Camera S.,Capobianco V.,Carbone C.,Carretero J.,Castander F. J.,Castellano M.,Cavuoti S.,Cledassou R.,Congedo G.,Conselice C. J.,Conversi L.,Copin Y.,Corcione L.,Costille A.,Courbin F.,Da Silva A.,Degaudenzi H.,Dinis J.,Dubath F.,Dupac X.,Ealet A.,Farrens S.,Ferriol S.,Frailis M.,Franceschi E.,Franzetti P.,Galeotta S.,Gillis B.,Giocoli C.,Grazian A.,Grupp F.,Guzzo L.,Holmes W.,Hornstrup A.,Hudelot P.,Jahnke K.,Kümmel M.,Kermiche S.,Kiessling A.,Kilbinger M.,Kitching T.,Kohley R.,Kubik B.,Kunz M.,Kurki-Suonio H.,Ligori S.,Lilje P. B.,Lloro I.,Mansutti O.,Marggraf O.,Markovic K.,Marulli F.,Massey R.,Maurogordato S.,Mei S.,Meneghetti M.,Meylan G.,Moscardini L.,Munari E.,Nichol R. C.,Niemi S.-M.,Nightingale J.,Padilla C.,Paltani S.,Pasian F.,Pedersen K.,Percival W. J.,Pettorino V.,Polenta G.,Poncet M.,Raison F.,Rhodes J.,Riccio G.,Romelli E.,Roncarelli M.,Saglia R.,Sapone D.,Schneider P.,Secroun A.,Seidel G.,Serrano S.,Sirri G.,Surace C.,Tallada-Crespí P.,Tavagnacco D.,Taylor A. N.,Tereno I.,Toledo-Moreo R.,Torradeflot F.,Trifoglio M.,Tutusaus I.,Valentijn E. A.,Valenziano L.,Vassallo T.,Wang Y.,Weller J.,Zacchei A.,Andreon S.,Aussel H.,Bardelli S.,Bolzonella M.,Boucaud A.,Bozzo E.,Colodro-Conde C.,Di Ferdinando D.,Farina M.,Graciá-Carpio J.,Keihänen E.,Lindholm V.,Maino D.,Mauri N.,Mellier Y.,Neissner C.,Scottez V.,Tenti M.,Zucca E.,Akrami Y.,Baccigalupi C.,Ballardini M.,Bernardeau F.,Biviano A.,Borlaff A. S.,Borsato E.,Burigana C.,Cabanac R.,Cappi A.,Carvalho C. S.,Casas S.,Castro T.,Chambers K.,Cooray A. R.,Coupon J.,Courtois H. M.,Davini S.,de la Torre S.,De Lucia G.,Desprez G.,Dole H.,Escartin J. A.,Escoffier S.,Ferrero I.,Finelli F.,Fotopoulou S.,Garcia-Bellido J.,George K.,Giacomini F.,Gozaliasl G.,Hildebrandt H.,Hook I.,Ilbert O.,Jimenez Muñoz A.,Kajava J. J. E.,Kansal V.,Kirkpatrick C. C.,Legrand L.,Loureiro A.,Macias-Perez J.,Magliocchetti M.,Mainetti G.,Maoli R.,Marcin S.,Martinelli M.,Martinet N.,Martins C. J. A. P.,Matthew S.,Maurin L.,Metcalf R. B.,Morgante G.,Nadathur S.,Nucita A. A.,Patrizii L.,Popa V.,Porciani C.,Potter D.,Pöntinen M.,Sánchez A. G.,Sakr Z.,Schneider A.,Sefusatti E.,Sereno M.,Shulevski A.,Spurio Mancini A.,Stadel J.,Steinwagner J.,Teyssier R.,Valiviita J.,Veropalumbo A.,Viel M.,Zinchenko I. A.

Abstract

This work focusses on the pilot run of a simulation campaign aimed at investigating the spectroscopic capabilities of the Euclid Near-Infrared Spectrometer and Photometer (NISP), in terms of continuum and emission line detection in the context of galaxy evolutionary studies. To this purpose, we constructed, emulated, and analysed the spectra of 4992 star-forming galaxies at 0.3 ≤ z ≤ 2.5 using the NISP pixel-level simulator. We built the spectral library starting from public multi-wavelength galaxy catalogues, with value-added information on spectral energy distribution (SED) fitting results, and stellar population templates from Bruzual & Charlot (2003, MNRAS, 344, 1000). Rest-frame optical and near-IR nebular emission lines were included using empirical and theoretical relations. Dust attenuation was treated using the Calzetti extinction law accounting for the differential attenuation in line-emitting regions with respect to the stellar continuum. The NISP simulator was configured including instrumental and astrophysical sources of noise such as the dark current, read-out noise, zodiacal background, and out-of-field stray light. In this preliminary study, we avoided contamination due to the overlap of the slitless spectra. For this purpose, we located the galaxies on a grid and simulated only the first order spectra. We inferred the 3.5σ NISP red grism spectroscopic detection limit of the continuum measured in the H band for star-forming galaxies with a median disk half-light radius of 0.″4 at magnitude H = 19.5 ± 0.2 AB mag for the Euclid Wide Survey and at H = 20.8 ± 0.6 AB mag for the Euclid Deep Survey. We found a very good agreement with the red grism emission line detection limit requirement for the Wide and Deep surveys. We characterised the effect of the galaxy shape on the detection capability of the red grism and highlighted the degradation of the quality of the extracted spectra as the disk size increased. In particular, we found that the extracted emission line signal-to-noise ratio (S/N) drops by ~45% when the disk size ranges from 0.″25 to 1″. These trends lead to a correlation between the emission line S/N and the stellar mass of the galaxy and we demonstrate the effect in a stacking analysis unveiling emission lines otherwise too faint to detect.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3