Euclid: Testing photometric selection of emission-line galaxy targets

Author:

Cagliari M. S.ORCID,Granett B. R.,Guzzo L.ORCID,Bethermin M.ORCID,Bolzonella M.ORCID,de la Torre S.,Monaco P.ORCID,Moresco M.,Percival W. J.ORCID,Scarlata C.ORCID,Wang Y.,Ezziati M.ORCID,Ilbert O.,Le Brun V.ORCID,Amara A.,Andreon S.,Auricchio N.,Baldi M.,Bardelli S.,Bender R.,Bodendorf C.,Branchini E.,Brescia M.,Brinchmann J.,Camera S.,Capobianco V.,Carbone C.,Carretero J.,Casas S.,Castellano M.,Cavuoti S.,Cimatti A.,Congedo G.,Conselice C. J.,Conversi L.,Copin Y.,Corcione L.,Courbin F.,Courtois H. M.,Da Silva A.,Degaudenzi H.,Di Giorgio A. M.,Dinis J.,Dubath F.,Duncan C. A. J.,Dupac X.,Dusini S.,Ealet A.,Farina M.,Farrens S.,Ferriol S.,Fotopoulou S.,Frailis M.,Franceschi E.,Galeotta S.,Gillis B.,Giocoli C.,Grazian A.,Grupp F.,Haugan S. V. H.,Hoekstra H.,Hook I.,Hormuth F.,Hornstrup A.,Jahnke K.,Keihänen E.,Kermiche S.,Kiessling A.,Kilbinger M.,Kubik B.,Kümmel M.,Kunz M.,Kurki-Suonio H.,Ligori S.,Lilje P. B.,Lindholm V.,Lloro I.,Maino D.,Maiorano E.,Mansutti O.,Marggraf O.,Markovic K.,Martinet N.,Marulli F.,Massey R.,Maurogordato S.,McCracken H. J.,Medinaceli E.,Mei S.,Mellier Y.,Meneghetti M.,Merlin E.,Meylan G.,Moscardini L.,Munari E.,Nichol R. C.,Niemi S.-M.,Padilla C.,Paltani S.,Pasian F.,Pedersen K.,Pettorino V.,Pires S.,Polenta G.,Poncet M.,Popa L. A.,Pozzetti L.,Raison F.,Rebolo R.,Renzi A.,Rhodes J.,Riccio G.,Romelli E.,Roncarelli M.,Rossetti E.,Saglia R.,Sapone D.,Sartoris B.,Schneider P.,Scodeggio M.,Secroun A.,Seidel G.,Seiffert M.,Serrano S.,Sirignano C.,Sirri G.,Skottfelt J.,Stanco L.,Surace C.,Taylor A. N.,Teplitz H. I.,Tereno I.,Toledo-Moreo R.,Torradeflot F.,Tutusaus I.,Valentijn E. A.,Valenziano L.,Vassallo T.,Veropalumbo A.,Weller J.,Zamorani G.,Zoubian J.,Zucca E.,Burigana C.,Scottez V.,Viel M.,Bisigello L.

Abstract

Multi-object spectroscopic galaxy surveys typically make use of photometric and colour criteria to select their targets. That is not the case of Euclid, which will use the NISP slitless spectrograph to record spectra for every source over its field of view. Slitless spectroscopy has the advantage of avoiding defining a priori a specific galaxy sample, but at the price of making the selection function harder to quantify. In its Wide Survey, Euclid was designed to build robust statistical samples of emission-line galaxies with fluxes brighter than 2 × 10−16 erg s−1 cm−2, using the Hα-[N II] complex to measure redshifts within the range [0.9, 1.8]. Given the expected signal-to-noise ratio of NISP spectra, at such faint fluxes a significant contamination by incorrectly measured redshifts is expected, either due to misidentification of other emission lines, or to noise fluctuations mistaken as such, with the consequence of reducing the purity of the final samples. This can be significantly ameliorated by exploiting the extensive Euclid photometric information to identify emission-line galaxies over the redshift range of interest. Beyond classical multi-band selections in colour space, machine learning techniques provide novel tools to perform this task. Here, we compare and quantify the performance of six such classification algorithms in achieving this goal. We consider the case when only the Euclid photometric and morphological measurements are used, and when these are supplemented by the extensive set of ancillary ground-based photometric data, which are part of the overall Euclid scientific strategy to perform lensing tomography. The classifiers are trained and tested on two mock galaxy samples, the EL-COSMOS and Euclid Flagship2 catalogues. The best performance is obtained from either a dense neural network or a support vector classifier, with comparable results in terms of the adopted metrics. When training on Euclid on-board photometry alone, these are able to remove 87% of the sources that are fainter than the nominal flux limit or lie outside the 0.9 < z < 1.8 redshift range, a figure that increases to 97% when ground-based photometry is included. These results show how by using the photometric information available to Euclid it will be possible to efficiently identify and discard spurious interlopers, allowing us to build robust spectroscopic samples for cosmological investigations.

Publisher

EDP Sciences

Reference47 articles.

1. Abadi M., Agarwal A., Barham P., et al. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, software available from tensorflow.org

2. The Impact of Line Misidentification on Cosmological Constraints from Euclid and Other Spectroscopic Galaxy Surveys

3. Boser B. E., Guyon I. M., & Vapnik V. N. 1992, Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92 (New York, NY, USA: Association for Computing Machinery), 144

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3