High-resolution APEX/LAsMA 12CO and 13CO (3–2) observation of the G333 giant molecular cloud complex

Author:

Zhou J. W.ORCID,Wyrowski F.,Neupane S.,Urquhart J. S.,Evans N. J.,Vázquez-Semadeni E.ORCID,Menten K. M.,Gong Y.,Liu T.

Abstract

Context. Hub-filament systems are suggested to be the birth cradles of high-mass stars and clusters. Aims. We investigate the gas kinematics of hub-filament structures in the G333 giant molecular cloud complex using 13CO (3–2) observed with the APEX/LAsMA heterodyne camera. Methods. We applied the FILFINDER algorithm to the integrated intensity maps of the 13CO J = 3–2 line to identify filaments in the G333 complex, and we extracted the velocity and intensity along the filament skeleton from moment maps. Clear velocity and density fluctuations are seen along the filaments, allowing us to fit velocity gradients around the intensity peaks. Results. The velocity gradients we fit to the LAsMA and ALMA data agree with each other over the scales covered by ALMA observations in the ATOMS survey (<5 pc). Changes in velocity gradient with scale indicate a funnel structure of the velocity field in position-position-velocity (PPV) space. This is indicative of a smooth, continuously increasing velocity gradient from large to small scales, and thus is consistent with gravitational acceleration. The typical velocity gradient corresponding to a 1 pc scale is ~1.6 km s−1 pc−1. Assuming freefall, we estimate a kinematic mass within 1 pc of ~1190 M, which is consistent with typical masses of clumps in the ATLASGAL survey of massive clumps in the inner Galaxy. We find direct evidence for gravitational acceleration from a comparison of the observed accelerations to those predicted by freefall onto dense hubs with masses from millimeter continuum observations. On large scales, we find that the inflow may be driven by the larger-scale structure, consistent with the hierarchical structure in the molecular cloud and gas inflow from large to small scales. The hub-filament structures at different scales may be organized into a hierarchical system extending up to the largest scales probed through the coupling of gravitational centers at different scales. Conclusions. We argue that the funnel structure in PPV space can be an effective probe for the gravitational collapse motions in molecular clouds. The large-scale gas inflow is driven by gravity, implying that the molecular clouds in the G333 complex may be in a state of global gravitational collapse.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3