Kinematics and Star Formation in the Hub–Filament System G6.55-0.1

Author:

Sen SauravORCID,Mookerjea BhaswatiORCID,Güsten RolfORCID,Wyrowski Friedrich,Ishwara-Chandra C. H.ORCID

Abstract

Abstract Hub–filament systems (HFSs) being the potential sites of formation of star clusters and high-mass stars, provide a testbed for the current theories that attempt to explain star formation globally. It is thus important to study a large number of HFSs using both intensity and velocity information to constrain these objects better observationally. Here, we present a study of the HFS associated with G6.55-0.1 using newly obtained observations of the radio continuum and the J = 2–1 transition of CO, 13CO, and C18O. The radio continuum maps show multiple peaks that coincide with far-infrared dust continuum peaks, indicating the presence of more than one young massive star in the hub of the HFS. We used the velocity information from the C18O(2–1) map to (a) show that the source G6.55-0.1 is not physically associated with the supernova remnant W28 and (b) disentangle and identify the velocity components genuinely associated with G6.55-0.1. Among the velocity-coherent structures identified in the region, we conclude that only the two filaments at 13.8 and 17.3 km s−1 contribute a total mass accretion rate of 3000 M Myr−1 to the hub. Both the filaments also show a V-shaped structure, characteristic of gravitational collapse, in their velocity profile at the location of the hub. The estimated mass per unit length of the segments of the filaments is smaller than the critical line masses derived from virial equilibrium considerations. This suggests that the filaments are not gravitationally collapsing as a whole, although their inner parts clearly show evidence of collapse in the form of young star-forming cores. We further conclude that the observed velocity gradients are consistent with the gravitational collapse of the main source in the region as estimated from its mass and size.

Funder

Department of Atomic Energy, Government of India

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3