Author:
Ellis John,Fairbairn Malcolm,Hütsi Gert,Raidal Martti,Urrutia Juan,Vaskonen Ville,Veermäe Hardi
Abstract
NANOGrav and other Pulsar Timing Arrays (PTAs) have discovered a common-spectrum process in the nHz range that may be due to gravitational waves (GWs): if so, they are likely to have been generated by black hole (BH) binaries with total masses > 109 M⊙. Using the Extended Press-Schechter formalism to model the galactic halo mass function and a simple relation between the halo and BH masses suggests that these binaries have redshifts z = 𝒪(1) and mass ratios ≳10, and that the GW signal at frequencies above 𝒪(10) nHz may be dominated by relatively few binaries that could be distinguished experimentally and would yield observable circular polarization. Extrapolating the model to higher frequencies indicates that future GW detectors such as LISA and AEDGE could extend the PTA observations to lower BH masses ≳103 M⊙.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献