The edge-on protoplanetary disk HH 48 NE

Author:

Sturm J. A.,McClure M. K.,Bergner J. B.,Harsono D.,Dartois E.,Drozdovskaya M. N.,Ioppolo S.,Öberg K. I.,Law C. J.,Palumbo M. E.,Pendleton Y. J.,Rocha W. R. M.,Terada H.,Urso R. G.

Abstract

Context. The abundance and distribution of ice in protoplanetary disks is critical for an understanding of the link between the composition of circumstellar matter and the composition of exoplanets. Edge-on protoplanetary disks are a useful tool for constraining this ice composition and its location in the disk because the spectral signatures of the ice can be observed in absorption against the continuum emission that arises from the warmer regions in the central disk. Aims. The aim of this work is to model ice absorption features in protoplanetary disks and to determine how well the abundance of the main ice species throughout the disk can be determined within the uncertainty of the physical parameter space. The edge-on proto-planetary disk around HH 48 NE, a target of the James Webb Space Telescope Early Release program Ice Age, is used as a reference system. Methods. We used the full anisotropic scattering capabilities of the radiative transfer code RADMC-3D to ray-trace the mid-infrared continuum. Using a constant parameterized ice abundance, we added ice opacities to the dust opacity in regions in which the disk was cold enough for the main carbon, oxygen, and nitrogen carriers to freeze out. Results. The global abundance relative to the dust content of the main ice carriers in HH 48 NE can be determined within a factor of 3 when the uncertainty of the physical parameters is taken into account. Ice features in protoplanetary disks can be saturated at an optical depth of ≲1 due to local saturation. Ices are observed at various heights in the disk model, but in this model, spatial information is lost for features at wavelengths >7 µm when observing with James Webb Space Telescope because the angular resolution decreases towards longer wavelengths. Spatially observed ice optical depths cannot be directly related to column densities, as would be the case for direct absorption against a bright continuum source, because of radiative transfer effects. Vertical snowlines will not be a clear transition because the height of the snow surface increases radially, but their location may be constrained from observations using radiative transfer modeling. Radial snowlines are not really accessible. Not only the ice abundance, but also the inclination, the settling, the grain size distribution, and the disk mass have a strong impact on the observed ice absorption features in disks. Relative changes in the ice abundance can only be inferred from observations if the source structure is well constrained.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3