Demographics of Protoplanetary Disks: A Simulated Population of Edge-on Systems

Author:

Angelo IsabelORCID,Duchene GaspardORCID,Stapelfeldt KarlORCID,Telkamp ZoieORCID,Ménard FrançoisORCID,Padgett DeborahORCID,Van der Plas GerritORCID,Villenave MarionORCID,Pinte ChristopheORCID,Wolff SchuylerORCID,Fischer William J.ORCID,Perrin Marshall D.ORCID

Abstract

Abstract The structure of protoplanetary disks plays an essential role in planet formation. A disk that is highly inclined, or “edge-on,” is of particular interest since its geometry provides a unique opportunity to study the disk’s vertical structure and radial extent. Candidate edge-on protoplanetary disks are typically identified via their unique spectral energy distributions (SEDs) and subsequently confirmed through high-resolution imaging. However, this selection process is likely biased toward the largest, most-massive disks, and the resulting sample may not accurately represent the underlying disk population. To investigate this, we generated a grid of protoplanetary disk models using radiative transfer simulations and determined which sets of disk parameters produce edge-on systems that could be recovered by the aforementioned detection techniques—i.e., identified by their SEDs and confirmed through follow-up imaging with the Hubble Space Telescope. In doing so, we adopt a quantitative working definition of “edge-on disks” (EODs) that is observation driven and agnostic about the disk inclination or other properties. Folding in empirical disk demographics, we predict an occurrence rate of 6.2% for EODs and quantify biases toward highly inclined, massive disks. We also find that EODs are underrepresented in samples of Spitzer-studied young stellar objects, particularly for disks with host masses of M ≲ 0.5 M . Overall, our analysis suggests that several dozen EODs remain undiscovered in nearby star-forming regions, and provides a universal selection process to identify EODs for consistent, population-level demographic studies.

Funder

NASA

HST GO

NSF ∣ MPS ∣ Division of Astronomical Sciences

European Commission

OTKA

European Southern Observatory

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3