Abstract
Abstract
The structure of protoplanetary disks plays an essential role in planet formation. A disk that is highly inclined, or “edge-on,” is of particular interest since its geometry provides a unique opportunity to study the disk’s vertical structure and radial extent. Candidate edge-on protoplanetary disks are typically identified via their unique spectral energy distributions (SEDs) and subsequently confirmed through high-resolution imaging. However, this selection process is likely biased toward the largest, most-massive disks, and the resulting sample may not accurately represent the underlying disk population. To investigate this, we generated a grid of protoplanetary disk models using radiative transfer simulations and determined which sets of disk parameters produce edge-on systems that could be recovered by the aforementioned detection techniques—i.e., identified by their SEDs and confirmed through follow-up imaging with the Hubble Space Telescope. In doing so, we adopt a quantitative working definition of “edge-on disks” (EODs) that is observation driven and agnostic about the disk inclination or other properties. Folding in empirical disk demographics, we predict an occurrence rate of 6.2% for EODs and quantify biases toward highly inclined, massive disks. We also find that EODs are underrepresented in samples of Spitzer-studied young stellar objects, particularly for disks with host masses of M ≲ 0.5 M
⊙. Overall, our analysis suggests that several dozen EODs remain undiscovered in nearby star-forming regions, and provides a universal selection process to identify EODs for consistent, population-level demographic studies.
Funder
NASA
HST GO
NSF ∣ MPS ∣ Division of Astronomical Sciences
European Commission
OTKA
European Southern Observatory
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献