Euclid preparation

Author:

,Ajani V.ORCID,Baldi M.ORCID,Barthelemy A.ORCID,Boyle A.ORCID,Burger P.ORCID,Cardone V. F.,Cheng S.ORCID,Codis S.,Giocoli C.ORCID,Harnois-Déraps J.ORCID,Heydenreich S.,Kansal V.,Kilbinger M.,Linke L.ORCID,Llinares C.ORCID,Martinet N.ORCID,Parroni C.,Peel A.ORCID,Pires S.,Porth L.ORCID,Tereno I.,Uhlemann C.ORCID,Vicinanza M.,Vinciguerra S.,Aghanim N.,Auricchio N.ORCID,Bonino D.,Branchini E.ORCID,Brescia M.ORCID,Brinchmann J.ORCID,Camera S.ORCID,Capobianco V.ORCID,Carbone C.ORCID,Carretero J.ORCID,Castander F. J.ORCID,Castellano M.ORCID,Cavuoti S.ORCID,Cimatti A.,Cledassou R.ORCID,Congedo G.ORCID,Conselice C. J.,Conversi L.ORCID,Corcione L.ORCID,Courbin F.ORCID,Cropper M.ORCID,Da Silva A.ORCID,Degaudenzi H.ORCID,Di Giorgio A. M.ORCID,Dinis J.,Douspis M.,Dubath F.ORCID,Dupac X.,Farrens S.ORCID,Ferriol S.,Fosalba P.,Frailis M.ORCID,Franceschi E.ORCID,Galeotta S.ORCID,Garilli B.ORCID,Gillis B.ORCID,Grazian A.ORCID,Grupp F.,Hoekstra H.ORCID,Holmes W.,Hornstrup A.ORCID,Hudelot P.,Jahnke K.ORCID,Jhabvala M.,Kümmel M.ORCID,Kitching T.ORCID,Kunz M.ORCID,Kurki-Suonio H.ORCID,Lilje P. B.ORCID,Lloro I.,Maiorano E.ORCID,Mansutti O.ORCID,Marggraf O.ORCID,Markovic K.ORCID,Marulli F.ORCID,Massey R.ORCID,Mei S.ORCID,Mellier Y.,Meneghetti M.ORCID,Moresco M.ORCID,Moscardini L.ORCID,Niemi S.-M.,Nightingale J.ORCID,Nutma T.,Padilla C.ORCID,Paltani S.,Pedersen K.,Pettorino V.,Polenta G.ORCID,Poncet M.,Popa L. A.,Raison F.ORCID,Renzi A.ORCID,Rhodes J.,Riccio G.,Romelli E.ORCID,Roncarelli M.,Rossetti E.,Saglia R.ORCID,Sapone D.ORCID,Sartoris B.,Schneider P.,Schrabback T.ORCID,Secroun A.ORCID,Seidel G.,Serrano S.,Sirignano C.ORCID,Stanco L.ORCID,Starck J.-L.ORCID,Tallada-Crespí P.ORCID,Taylor A. N.,Toledo-Moreo R.ORCID,Torradeflot F.ORCID,Tutusaus I.ORCID,Valentijn E. A.,Valenziano L.ORCID,Vassallo T.ORCID,Wang Y.ORCID,Weller J.ORCID,Zamorani G.ORCID,Zoubian J.,Andreon S.ORCID,Bardelli S.ORCID,Boucaud A.ORCID,Bozzo E.ORCID,Colodro-Conde C.,Di Ferdinando D.,Fabbian G.ORCID,Farina M.,Graciá-Carpio J.,Keihänen E.ORCID,Lindholm V.,Maino D.,Mauri N.ORCID,Neissner C.ORCID,Schirmer M.ORCID,Scottez V.,Zucca E.ORCID,Akrami Y.ORCID,Baccigalupi C.ORCID,Balaguera-Antolínez A.ORCID,Ballardini M.ORCID,Bernardeau F.,Biviano A.ORCID,Blanchard A.ORCID,Borgani S.ORCID,Borlaff A. S.,Burigana C.ORCID,Cabanac R.ORCID,Cappi A.,Carvalho C. S.,Casas S.ORCID,Castignani G.ORCID,Castro T.ORCID,Chambers K. C.ORCID,Cooray A. R.ORCID,Coupon J.,Courtois H. M.ORCID,Davini S.,de la Torre S.,De Lucia G.ORCID,Desprez G.,Dole H.ORCID,Escartin J. A.,Escoffier S.ORCID,Ferrero I.ORCID,Finelli F.,Ganga K.ORCID,Garcia-Bellido J.ORCID,George K.ORCID,Giacomini F.ORCID,Gozaliasl G.ORCID,Hildebrandt H.ORCID,Jimenez Muñoz A.,Joachimi B.ORCID,Kajava J. J. E.ORCID,Kirkpatrick C. C.,Legrand L.ORCID,Loureiro A.ORCID,Magliocchetti M.ORCID,Maoli R.,Marcin S.,Martinelli M.ORCID,Martins C. J. A. P.ORCID,Matthew S.,Maurin L.ORCID,Metcalf R. B.ORCID,Monaco P.ORCID,Morgante G.,Nadathur S.ORCID,Nucita A. A.,Popa V.,Potter D.ORCID,Pourtsidou A.ORCID,Pöntinen M.ORCID,Reimberg P.ORCID,Sánchez A. G.ORCID,Sakr Z.ORCID,Schneider A.ORCID,Sefusatti E.ORCID,Sereno M.ORCID,Shulevski A.ORCID,Spurio Mancini A.ORCID,Steinwagner J.,Teyssier R.ORCID,Valiviita J.ORCID,Veropalumbo A.ORCID,Viel M.ORCID,Zinchenko I. A.

Abstract

Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of Euclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ωm, σ8) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with Euclid. The data used in this analysis are publicly released with the paper.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3