The Kormendy relation of early-type galaxies as a function of wavelength in Abell S1063, MACS J0416.1-2403, and MACS J1149.5+2223

Author:

Tortorelli L.ORCID,Mercurio A.,Granata G.,Rosati P.,Grillo C.,Nonino M.,Acebron A.,Angora G.,Bergamini P.,Caminha G. B.,Meštrić U.,Vanzella E.

Abstract

Context. The wavelength dependence of the projection of the fundamental plane along the velocity dispersion axis, namely the Kormendy relation, is well characterised at low redshift but poorly studied at intermediate redshifts. The Kormendy relation provides information on the evolution of the population of early-type galaxies (ETGs). Therefore, by studying it, we may shed light on the assembly processes of these objects and their size evolution. As studies at different redshifts are generally conducted in different rest-frame wavebands, it is important to investigate whether the Kormendy relation is dependent on wavelength. Knowledge of such a dependence is fundamental to correctly interpreting the conclusions we might draw from these studies. Aims. We analyse the Kormendy relations of the three Hubble Frontier Fields clusters, Abell S1063 at z = 0.348, MACS J0416.1-2403 at z = 0.396, and MACS J1149.5+2223 at z = 0.542, as a function of wavelength. This is the first time the Kormendy relation of ETGs has been explored consistently over such a large range of wavelengths at intermediate redshifts. Methods. We exploit very deep Hubble Space Telescope photometry, ranging from the observed B-band to the H-band, and VLT/MUSE integral field spectroscopy. We improve the structural parameter estimation we performed in a previous work by means of a newly developed PYTHON package called MORPHOFIT. Results. With its use on cluster ETGs, we find that the Kormendy relation slopes increase smoothly with wavelength from the optical to the near-infrared (NIR) bands in all three clusters, with the intercepts becoming fainter at lower redshifts due to the passive ageing of the ETG stellar populations. The slope trend is consistent with previous findings at lower redshifts. Conclusions. The slope increase with wavelength implies that smaller ETGs are more centrally concentrated than larger ETGs in the NIR with respect to the optical regime. As different bands probe different stellar populations in galaxies, the slope increase also implies that smaller ETGs have stronger internal gradients with respect to larger ETGs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3