Opacity for realistic 3D MHD simulations of cool stellar atmospheres

Author:

Perdomo García A.ORCID,Vitas N.,Khomenko E.ORCID,Collados M.ORCID,Allende Prieto C.ORCID,Hubeny I.ORCID,Osorio Y.ORCID

Abstract

Context. Realistic three-dimensional time-dependent simulations of stellar near-surface convection employ the opacity binning method for the efficient and accurate computation of the radiative energy exchange. The method provides several orders of magnitude of speedup, but its implementation includes a number of free parameters. Aims. Our aim is to evaluate the accuracy of the opacity binning method as a function of the choice of these free parameters. Methods. The monochromatic opacities computed with the SYNSPEC code were used to construct opacity distribution function (ODF) that was then verified through detailed comparison with the results of the ATLAS code. The opacity binning method was implemented with the SYNSPEC opacities for four representative cool main-sequence stellar spectral types (F3V, G2V, K0V, and M2V). Results. The ODFs from SYNSPEC and ATLAS show consistent results for the opacity and bolometric radiative energy exchange rate Q in the case of the F-, G-, and K-type stars. Significant differences, coming mainly from the molecular line lists, are found for the M-type star. It is possible to optimise a small number of bins to reduce the deviation of the results coming from the opacity grouping with respect to the ODF for the F-, G-, and K-type stars. In the case of the M-type star, the inclusion of splitting in wavelength is needed in the grouping to get similar results, with a subsequent increase in computing time. In the limit of a large number of bins, the deviation for all the binning configurations tested saturates and the results do not converge to the ODF solution. Due to this saturation, the Q rate cannot be improved by increasing the number of bins to more than about 20 bins. The more effective strategy is to select the optimal location of fewer bins.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3