Hydrodynamic simulations of cool stellar atmospheres with MANCHA

Author:

García A. PerdomoORCID,Vitas N.ORCID,Khomenko E.ORCID,Collados M.ORCID

Abstract

Context. Three-dimensional time-dependent simulations of stellar atmospheres are essential to study the surface of stars other than the Sun. These simulations require the opacity binning method to reduce the computational cost of solving the radiative transfer equation down to viable limits. The method depends on a series of free parameters, among which the location and number of bins are key to set the accuracy of the resulting opacity. Aims. Our aim is to test how different binning strategies previously studied in one-dimensional models perform in three-dimensional radiative hydrodynamic simulations of stellar atmospheres. Methods. Realistic box-in-a-star simulations of the near-surface convection and photosphere of three spectral types (G2V, K0V, and M2V) were run with the MANCHA code with grey opacity. After reaching the stationary state, one snapshot of each of the three stellar simulations was used to compute the radiative energy exchange rate with grey opacity, opacity binned in four τ-bins, and opacity binned in 18 {τ, λ}-bins. These rates were compared with the ones computed with opacity distribution functions. Then, stellar simulations were run with grey, four-bin, and 18-bin opacities to see the impact of the opacity setup on the mean stratification of the temperature and its gradient after time evolution. Results. The simulations of main sequence cool stars with the MANCHA code are consistent with those in the literature. For the three stars, the radiative energy exchange rates computed with 18 bins are remarkably close to the ones computed with the opacity distribution functions. The rates computed with four bins are similar to the rates computed with 18 bins, and present a significant improvement with respect to the rates computed with the Rosseland opacity, especially above the stellar surface. The Rosseland mean can reproduce the proper rates in sub-surface layers, but produces large errors for the atmospheric layers of the G2V and K0V stars. In the case of the M2V star, the Rosseland mean fails even in sub-surface layers, owing to the importance of the contribution from molecular lines in the opacity, underestimated by the harmonic mean. Similar conclusions are reached studying the mean stratification of the temperature and its gradient after time evolution.

Funder

Ministerio de Ciencia e Innovación

European Research Council

Publisher

EDP Sciences

Reference65 articles.

1. Allende Prieto C., Hubeny I., Lanz T., & Osorio Y. 2023, Synple, User’s Guide https://github.com/callendeprieto/synple/blob/master/docs/synple.pdf

2. Carbon and oxygen in metal-poor halo stars

3. The solar carbon, nitrogen, and oxygen abundances from a 3D LTE analysis of molecular lines

4. Abundances of the elements: Meteoritic and solar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3