Toward a 3D kinetic tomography of Taurus clouds

Author:

Duchêne Q.ORCID,Hottier C.ORCID,Lallement R.ORCID,Vergely J. L.ORCID,Babusiaux C.ORCID,Marchal A.ORCID,Arenou F.ORCID

Abstract

Context. Three-dimensional (3D) kinetic maps of the Milky Way interstellar medium are an essential tool in studies of its structure and of star formation. Aims. We aim to assign radial velocities to Galactic interstellar clouds now spatially localized based on starlight extinction and star distances from Gaia and stellar surveys. Methods. We developed an automated search for coherent projections on the sky of clouds isolated in 3D extinction density maps on the one hand, and regions responsible for CO radio emissions at specific Doppler shifts on the other hand. The discrete dust structures were obtained by application of the Fellwalker algorithm to a recent 3D extinction density map. For each extinction cloud, a technique using a narrow sliding spectral window moved along the contour-bounded CO spectrum and geometrical criteria was used to select the most likely velocity interval. Results. We applied the new contour-based technique to the 3D extinction density distribution within the volume encompassing the Taurus, Auriga, Perseus, and California molecular complexes. From the 45 clouds issued from the decomposition, 42 were assigned a velocity. The remaining structures correspond to very weak CO emission or extinction. We used the non-automated assignments of radial velocities to clouds of the same region presented in Paper I and based on KI absorption spectra as a validation test. The new fully automated determinations were found to be in good agreement with these previous measurements. Conclusions. Our results show that an automated search based on cloud-contour morphology can be efficient and that this novel technique may be extended to wider regions of the Milky Way and at larger distance. We discuss its limitations and potential improvements after combination with other techniques.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3