Structure and kinematics of the Taurus star-forming region from Gaia-DR2 and VLBI astrometry

Author:

Galli P. A. B.,Loinard L.,Bouy H.,Sarro L. M.,Ortiz-León G. N.,Dzib S. A.,Olivares J.,Heyer M.,Hernandez J.,Román-Zúñiga C.,Kounkel M.,Covey K.

Abstract

Aims. We take advantage of the second data release of the Gaia space mission and the state-of-the-art astrometry delivered from very long baseline interferometry observations to revisit the structure and kinematics of the nearby Taurus star-forming region. Methods. We apply a hierarchical clustering algorithm for partitioning the stars in our sample into groups (i.e., clusters) that are associated with the various molecular clouds of the complex, and derive the distance and spatial velocity of individual stars and their corresponding molecular clouds. Results. We show that the molecular clouds are located at different distances and confirm the existence of important depth effects in this region reported in previous studies. For example, we find that the L 1495 molecular cloud is located at d = 129.9+0.4−0.3 pc, while the filamentary structure connected to it (in the plane of the sky) is at d = 160.0+1.2−1.2 pc. We report B 215 and L 1558 as the closest (d = 128.5+1.6−1.6 pc) and most remote (d = 198.1+2.5−2.5 pc) substructures of the complex, respectively. The median inter-cloud distance is 25 pc and the relative motion of the subgroups is on the order of a few km s−1. We find no clear evidence for expansion (or contraction) of the Taurus complex, but signs of the potential effects of a global rotation. Finally, we compare the radial velocity of the stars with the velocity of the underlying 13CO molecular gas and report a mean difference of 0.04 ± 0.12 km s−1 (with rms of 0.63 km s−1) confirming that the stars and the gas are tightly coupled.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3