A population of hypercompact H II regions identified from young H II regions

Author:

Yang A. Y.,Urquhart J. S.,Thompson M. A.,Menten K. M.,Wyrowski F.,Brunthaler A.,Tian W. W.,Rugel M.,Yang X. L.,Yao S.,Mutale M.

Abstract

Context. The derived physical parameters for young H II regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young H II regions such as hyper-compact H II (HC H II) and ultra-compact H II (UC H II) regions and leads to underestimation of their properties. This can be overcome by fitting the SEDs over a wide range of radio frequencies. Aims. The two primary goals of this study are (1) to determine the physical properties of young H II regions from radio SEDs in the search for potential HC H II regions, and (2) to use these physical properties to investigate their evolution. Methods. We used the Karl G. Jansky Very Large Array (VLA) to observe the X-band and K-band with angular resolutions of ~1.7′′ and ~0.7′′, respectively, toward 114 H II regions with rising-spectra (α1.4 GHz5 GHz>0). We complement our observations with VLA archival data and construct SEDs in the range of 1−26 GHz and model them assuming an ionization-bounded H II region with uniform density. Results. Our sample has a mean electron density of ne = 1.6 × 104 cm−3, diameter diam = 0.14 pc, and emission measure EM = 1.9 × 107 pc cm−6. We identify 16 HC H II region candidates and 8 intermediate objects between the classes of HC H II and UC H II regions. The ne, diam, and EM change, as expected, but the Lyman continuum flux is relatively constant over time. We find that about 67% of Lyman-continuum photons are absorbed by dust within these H II regions and the dust absorption fraction tends to be more significant for more compact and younger H II regions. Conclusions. Young H II regions are commonly located in dusty clumps; HC H II regions and intermediate objects are often associated with various masers, outflows, broad radio recombination lines, and extended green objects, and the accretion at the two stages tends to be quickly reduced or halted.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3