Cause and effects of the massive star formation in Messier 8 East

Author:

Tiwari M.,Menten K. M.,Wyrowski F.,Giannetti A.,Lee M.-Y.,Kim W.-J.,Pérez-Beaupuits J. P.

Abstract

Context. Messier 8 (M8), one of the brightest H II regions in our Galaxy, is powered by massive O-type stars and is associated with recent and ongoing massive star formation. Two prominent massive star-forming regions associated with M8 are M8-Main, the particularly bright part of the large-scale H II region (mainly) ionized by the stellar system Herschel 36 (Her 36) and M8 East (M8 E), which is mainly powered by a deeply embedded young stellar object (YSO), the bright infrared (IR) source M8E-IR. Aims. We study the interaction of the massive star-forming region M8 E with its surroundings using observations of assorted diffuse and dense gas tracers that allow quantifying the kinetic temperatures and volume densities in this region. With a multiwavelength view of M8 E, we investigate the cause of star formation. Moreover, we compare the star-forming environments of M8-Main and M8 E, based on their physical conditions and the abundances of the various observed species toward them. Methods. We used the Institut de Radioastronomía Millimétrica 30 m telescope to perform an imaging spectroscopy survey of the ~1 pc scale molecular environment of M8E-IR and also performed deep integrations toward the source itself. We imaged and analyzed data for the J = 1 → 0 rotational transitions of 12CO, 13CO, N2H+, HCN, H13CN, HCO+, H13CO+, HNC, and HN13C observed for the first time toward M8 E. To visualize the distribution of the dense and diffuse gas in M8 E, we compared our velocity-integrated intensity maps of 12CO, 13CO, and N2H+ with ancillary data taken at IR and submillimeter wavelengths. We used techniques that assume local thermodynamic equilibrium (LTE) and non-LTE to determine column densities of the observed species and constrain the physical conditions of the gas that causes their emission. Examining the class 0/ I and class II YSO populations in M8 E, allows us to explore the observed ionization front (IF) as seen in the high resolution Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) 8 μm emission image. The difference between the ages of the YSOs and their distribution in M8 E were used to estimate the speed of the IF. Results. We find that 12CO probes the warm diffuse gas also traced by the GLIMPSE 8 μm emission, while N2H+ traces the cool and dense gas following the emission distribution of the APEX Telescope Large Area Survey of the Galaxy 870 μm dust continuum. We find that the star-formation in M8 E appears to be triggered by the earlier formed stellar cluster NGC 6530, which powers an H II region giving rise to an IF that is moving at a speed ≥0.26 km s−1 across M8 E. Based on our qualitative and quantitative analysis, the J = 1 → 0 transition lines of N2H+ and HN13C appear to be more direct tracers of dense molecular gas than the J = 1 → 0 transition lines of HCN and HCO+. We derive temperatures of 80 and 30 K for the warm and cool gas components, respectively, and constrain the H2 volume densities to be in the range of 104–106 cm−3. Comparison of the observed abundances of various species reflects the fact that M8 E is at an earlier stage of massive star formation than M8-Main.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3