The effects of stellar feedback on molecular clumps in the Lagoon Nebula (M8)

Author:

Kahle K. AngeliqueORCID,Wyrowski Friedrich,König CarstenORCID,Christensen Ivalu BarlachORCID,Tiwari Maitraiyee,Menten Karl M.ORCID

Abstract

Context. The Lagoon Nebula (M8) is host to multiple regions with recent and ongoing massive star formation, due to which it appears as one of the brightest H II regions in the sky. M8-Main and M8 East, two prominent regions of massive star formation, have been studied in detail over the past few years, while large parts of the nebula and its surroundings have received little attention. These largely unexplored regions comprise a large sample of molecular clumps that are affected by the presence of massive O- and B-type stars. Thus, exploring the dynamics and chemical composition of these clumps will improve our understanding of the feedback from massive stars on star-forming regions in their vicinity. Aims. We established an inventory of species observed towards 37 known molecular clumps in M8 and investigated their physical structure. We compared our findings for these clumps with the galaxy-wide sample of massive dense clumps observed as part of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). Furthermore, we investigated the region for signs of star formation and stellar feedback. Methods. To obtain an overview of the kinematics and chemical abundances across the sample of molecular clumps in the M8 region, we conducted an unbiased line survey for each clump. We used the Atacama Pathfinder EXperiment (APEX) 12m submillimetre telescope and the 30 m telescope of the Institut de Radioastronomie Millimétrique (IRAM) to conduct pointed on-off observations of 37 clumps in M8. These observations cover bandwidths of 53 GHz and 40 GHz in frequency ranges from 210 GHz to 280 GHz and from 70 GHz to 117 GHz, respectively. Temperatures were derived from rotational transitions of acetonitrile, methyl acetylene, and para-formaldehyde. Additional archival data from the Spitzer, Herschel, MSX, APEX, WISE, JCMT, and AKARI telescopes were used to investigate the morphology of the region and to derive the physical parameters of the dust emission by fitting spectral energy distributions to the observed flux densities. Results. Across the observed M8 region, we identify 346 transitions from 70 different molecular species, including isotopologues. While many species and fainter transitions are detected exclusively towards M8 East, we also observe a large chemical variety in many other molecular clumps. We detect tracers of photo-dissociation regions (PDRs) across all the clumps, and 38% of these clumps show signs of star formation. In our sample of clumps with extinctions between 1 and 60 mag, we find that PDR tracers are most abundant in clumps with relatively low H2 column densities. When comparing M8 clumps to ATLASGAL sources at similar distances, we find them to be slightly less massive (median 10 M) and have compatible luminosities (median 200 L) and radii (median 0.16 pc). In contrast, dust temperatures of the clumps in M8 are found to be increased by approximately 5 K (25%), indicating substantial external heating of the clumps by radiation of the present O- and B-type stars. Conclusions. This work finds clear and widespread effects of stellar feedback on the molecular clumps in the Lagoon Nebula. While the radiation from the O- and B-type stars possibly causes fragmentation of the remnant gas and heats the molecular clumps externally, it also gives rise to extended PDRs on the clump surfaces. Despite this fragmentation, the dense cores within 38% of the observed clumps in M8 are forming a new generation of stars.

Funder

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3