Asteroid spectral taxonomy using neural networks

Author:

Penttilä A.ORCID,Hietala H.,Muinonen K.ORCID

Abstract

Aims. We explore the performance of neural networks in automatically classifying asteroids into their taxonomic spectral classes. We particularly focus on what the methodology could offer the ESA Gaia mission. Methods. We constructed an asteroid dataset that can be limited to simulating Gaia samples. The samples were fed into a custom-designed neural network that learns how to predict the samples’ spectral classes and produces the success rate of the predictions. The performance of the neural network is also evaluated using three real preliminary Gaia asteroid spectra. Results. The overall results show that the neural network can identify taxonomic classes of asteroids in a robust manner. The success in classification is evaluated for spectra from the nominal 0.45–2.45 μm wavelength range used in the Bus-DeMeo taxonomy, and from a limited range of 0.45–1.05 μm following the joint wavelength range of Gaia observations and the Bus-DeMeo taxonomic system. Conclusions. The obtained results indicate that using neural networks to execute automated classification is an appealing solution for maintaining asteroid taxonomies, especially as the size of the available datasets grows larger with missions like Gaia.

Funder

Academy of Finland

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3