(433) Eros and (25143) Itokawa surface properties from reflectance spectra

Author:

Korda DavidORCID,Kohout TomášORCID,Flanderová KateřinaORCID,Vincent Jean-BaptisteORCID,Penttilä AnttiORCID

Abstract

Context. Our knowledge of near-Earth asteroid (NEA) composition is important for planetary research, planetary defence, and future in-space resource utilisation. Upcoming space missions, for example, Hera, M-ARGO, or missions to the asteroid (99942) Apophis, will provide us with surface-resolved NEA reflectance spectra. Neural networks are useful tools for analysing reflectance spectra and determining material composition with high precision and low processing time. Aims. We applied neural-network models on disk-resolved spectra of the Eros and Itokawa asteroids observed by the NEAR Shoemaker and Hayabusa spacecraft. With this approach, the mineral variations or intensity of space weathering can be mapped. Methods. We built and tested two types of convolutional neural networks (CNNs). The first one was trained using asteroid reflectance spectra with known taxonomy classes. The other one used silicate reflectance spectra with assigned mineral abundances and compositions. Results. The reliability of the classification model depends on the resolution of reflectance spectra. Typical F1 score and Cohen's κC values decrease from about 0.90 for high-resolution spectra to about 0.70 for low-resolution spectra. The predicted silicate composition does not strongly depend on spectrum resolution and coverage of the 2-µm band of pyroxene. The typical root mean square error is between 6 and 10 percentage points. For the Eros and Itokawa asteroids, the predicted taxonomy classes favour the S-type and the predicted surface compositions are homogeneous and correspond to the composition of L/LL and LL ordinary chondrites, respectively. On the Itokawa surface, the model identified fresh spots that were connected with craters or coarse-grain areas. Conclusions. The neural network models trained with measured spectra of asteroids and silicate samples are suitable for deriving surface silicate mineralogy with a reasonable level of accuracy. The predicted surface mineralogy is comparable to the mineralogy of returned samples measured in the laboratory. Moreover, the taxonomical predictions can point out locations of fresher areas.

Funder

Academy of Finland

NASA SSERVI Center for Asteroid and Lunar Surface Science

Institute of Geology of the Czech Academy of Sciences

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3