Galaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars

Author:

Marasco A.ORCID,Cresci G.ORCID,Nardini E.ORCID,Mannucci F.ORCID,Marconi A.ORCID,Tozzi P.,Tozzi G.ORCID,Amiri A.ORCID,Venturi G.ORCID,Piconcelli E.ORCID,Lanzuisi G.ORCID,Tombesi F.ORCID,Mingozzi M.ORCID,Perna M.ORCID,Carniani S.ORCID,Brusa M.ORCID,di Serego Alighieri S.ORCID

Abstract

We used MUSE adaptive optics data in narrow field mode to study the properties of the ionised gas in MR 2251−178 and PG 1126−041, two nearby (z ≃ 0.06) bright quasars (QSOs) hosting sub-pc scale ultra-fast outflows (UFOs) detected in the X-ray band. We decomposed the optical emission from diffuse gas into a low- and a high-velocity components. The former is characterised by a clean, regular velocity field and a low (∼80 km s−1) velocity dispersion. It traces regularly rotating gas in PG 1126−041, while in MR 2251−178 it is possibly associated with tidal debris from a recent merger or flyby. The other component is found to be extended up to a few kpc from the nuclei, and shows a high (∼800 km s−1) velocity dispersion and a blue-shifted mean velocity, as is expected from outflows driven by active galactic nuclei (AGN). We estimate mass outflow rates up to a few M yr−1 and kinetic efficiencies LKIN/LBOL between 1−4 × 10−4, in line with those of galaxies hosting AGN of similar luminosities. The momentum rates of these ionised outflows are comparable to those measured for the UFOs at sub-pc scales, which is consistent with a momentum-driven wind propagation. Pure energy-driven winds are excluded unless about 100× additional momentum is locked in massive molecular winds. In comparing the outflow properties of our sources with those of a small sample of well-studied QSOs hosting UFOs from the literature, we find that winds seem to systematically lie either in a momentum-driven or an energy-driven regime, indicating that these two theoretical models bracket the physics of AGN-driven winds very well.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3