The MOSDEF survey: properties of warm ionized outflows at z = 1.4–3.8

Author:

Weldon Andrew1ORCID,Reddy Naveen A1,Coil Alison L2,Shapley Alice E3,Siana Brian1,Price Sedona H4ORCID,Kriek Mariska5,Mobasher Bahram1,Song Zhiyuan1ORCID,Wozniak Michael A1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of California , Riverside, 900 University Avenue, Riverside, CA 92521 , USA

2. Center for Astrophysics and Space Sciences, Department of Physics, University of California , San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0424 , USA

3. Physics & Astronomy Department, University of California , Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 , USA

4. Department of Physics & Astronomy and PITT PACC, University of Pittsburgh , Pittsburgh, PA 15260 , USA

5. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden , the Netherlands

Abstract

ABSTRACT We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate the kinematics and energetics of ionized gas outflows. Using a sample of 598 star-forming galaxies at redshift 1.4 < z < 3.8, we decompose [O iii] and $\rm {H}\,\alpha$ emission lines into narrow and broad components, finding significant detections of broad components in 10 per cent of the sample. The ionized outflow velocity from individual galaxies appears independent of galaxy properties, such as stellar mass, star formation rate (SFR), and SFR surface density (ΣSFR). Adopting a simple outflow model, we estimate the mass-, energy-, and momentum-loading factors of the ionized outflows, finding modest values with averages of 0.33, 0.04, and 0.22, respectively. The larger momentum- than energy-loading factors, for the adopted physical parameters, imply that these ionized outflows are primarily momentum driven. We further find a marginal correlation (2.5σ) between the mass-loading factor and stellar mass in agreement with predictions by simulations, scaling as ηm$\propto M_{\star }^{-0.45}$. This shallow scaling relation is consistent with these ionized outflows being driven by a combination of mechanical energy generated by supernovae explosions and radiation pressure acting on dusty material. In a majority of galaxies, the outflowing material does not appear to have sufficient velocity to escape the gravitational potential of their host, likely recycling back at later times. Together, these results suggest that the ionized outflows traced by nebular emission lines are negligible, with the bulk of mass and energy carried out in other gaseous phases.

Funder

NSF

Space Telescope Science Institute

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The origin of the H α line profiles in simulated disc galaxies;Monthly Notices of the Royal Astronomical Society;2024-09-09

2. The NIRVANDELS survey: the stellar and gas-phase mass-metallicity relations of star-forming galaxies at z = 3.5;Monthly Notices of the Royal Astronomical Society;2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3