Simulations of starspot anomalies within TESS exoplanetary transit light curves

Author:

Tregloan-Reed J.ORCID,Unda-Sanzana E.

Abstract

Aims. We determine the starspot detection rate in exoplanetary transit light curves for M and K dwarf stars observed by the Transiting Exoplanet Survey Satellite (TESS) using various starspot filling factors and starspot distributions. Methods. We used 3.6 × 109 simulations of planetary transits around spotted stars using the transit-starspot model PRISM. The simulations cover a range of starspot filling factors using one of three distributions: uniform, polar-biased, and mid-latitude. After construction of the stellar disc and starspots, we checked the transit cord for starspots and examined the change in flux of each starspot to determine whether or not a starspot anomaly would be detected. The results were then compared to predicted planetary detections for TESS. Results. The results show that for the case of a uniform starspot distribution, 64 ± 9 M dwarf and 23 ± 4 K dwarf transit light curves observed by TESS will contain a starspot anomaly. This reduces to 37 ± 6 M dwarf and 12 ± 2 K dwarf light curves for a polar-biased distribution and 47 ± 7 M dwarf and 21 ± 4 K dwarf light curves for a mid-latitude distribution. Conclusions. Currently there are only 17 M dwarf and 10 K dwarf confirmed planetary systems from TESS, none of which are confirmed as showing starspot anomalies. All three starspot distributions can explain the current trend. However, with such a small sample, a firm conclusion cannot be made at present. In the coming years when more TESS M and K dwarf exoplanetary systems have been detected and characterised, it will be possible to determine the dominant starspot distribution.

Funder

CONICYT/FONDECYT 2018 Postdoctoral research

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3