Effect of latitudinal differential rotation on solar Rossby waves: Critical layers, eigenfunctions, and momentum fluxes in the equatorial β plane

Author:

Gizon L.ORCID,Fournier D.ORCID,Albekioni M.ORCID

Abstract

Context. Retrograde-propagating waves of vertical vorticity with longitudinal wavenumbers between 3 and 15 have been observed on the Sun with a dispersion relation close to that of classical sectoral Rossby waves. The observed vorticity eigenfunctions are symmetric in latitude, peak at the equator, switch sign near 20°–30°, and decrease at higher latitudes. Aims. We search for an explanation that takes solar latitudinal differential rotation into account. Methods. In the equatorial β plane, we studied the propagation of linear Rossby waves (phase speed c <  0) in a parabolic zonal shear flow, U = − ξ2 < 0, where = 244 m s−1, and ξ is the sine of latitude. Results. In the inviscid case, the eigenvalue spectrum is real and continuous, and the velocity stream functions are singular at the critical latitudes where U = c. We add eddy viscosity to the problem to account for wave attenuation. In the viscous case, the stream functions solve a fourth-order modified Orr-Sommerfeld equation. Eigenvalues are complex and discrete. For reasonable values of the eddy viscosity corresponding to supergranular scales and above (Reynolds number 100 ≤ Re ≤ 700), all modes are stable. At fixed longitudinal wavenumber, the least damped mode is a symmetric mode whose real frequency is close to that of the classical Rossby mode, which we call the R mode. For Re ≈ 300, the attenuation and the real part of the eigenfunction is in qualitative agreement with the observations (unlike the imaginary part of the eigenfunction, which has a larger amplitude in the model). Conclusions. Each longitudinal wavenumber is associated with a latitudinally symmetric R mode trapped at low latitudes by solar differential rotation. In the viscous model, R modes transport significant angular momentum from the dissipation layers toward the equator.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference44 articles.

1. Normal Modes and Continuous Spectraa

2. Bekki Y., Cameron R., & Gizon L. 2019, Poster at conference “Physics at the equator: from the lab to the stars”, ENS Lyon, France, 16–18 October, https://equatorial-phys.sciencesconf.org/data/Bekki_poster.pdf

3. THE INFLUENCE OF LATITUDINAL WIND SHEAR UPON LARGE-SCALE WAVE PROPAGATION INTO THE TROPICS

4. Boyd J. P. 2018, Dynamics of the Equatorial Ocean (Berlin: Springer)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3