A Linear Model for Inertial Modes in a Differentially Rotating Sun

Author:

Bhattacharya JishnuORCID,Hanson Chris S.ORCID,Hanasoge Shravan M.ORCID,Sreenivasan Katepalli R.ORCID

Abstract

Abstract Inertial wave modes in the Sun are of interest owing to their potential to reveal new insight into the solar interior. These predominantly retrograde-propagating modes in the solar subsurface appear to deviate from the thin-shell Rossby–Haurwitz model at high azimuthal orders. We present new measurements of sectoral inertial modes at m > 15 where the modes appear to become progressively less retrograde compared to the canonical Rossby–Haurwitz dispersion relation in a corotating frame. We use a spectral eigenvalue solver to compute the spectrum of solar inertial modes in the presence of differential rotation. Focussing specifically on equatorial Rossby modes, we find that the numerically obtained mode frequencies lie along distinct ridges, one of which lies strikingly close to the observed mode frequencies in the Sun. We also find that the n = 0 ridge is deflected strongly in the retrograde direction. This suggests that the solar measurements may not correspond to the fundamental n = 0 Rossby–Haurwitz solutions as was initially suspected, but to those for a higher n. The numerically obtained eigenfunctions also appear to sit deep within the convection zone—unlike those for the n = 0 modes—which differs substantially from solar measurements and complicates inference.

Funder

NYUAD ∣ Research Institute Centers, New York University Abu Dhabi

King Abdullah University of Science and Technology

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3