Internal water storage capacity of terrestrial planets and the effect of hydration on the M-R relation

Author:

Shah O.,Alibert Y.,Helled R.,Mezger K.

Abstract

Context. The discovery of low density exoplanets in the super-Earth mass regime suggests that ocean planets could be abundant in the galaxy. Understanding the chemical interactions between water and Mg-silicates or iron is essential for constraining the interiors of water-rich planets. Hydration effects have, however, been mostly neglected by the astrophysics community so far. As such effects are unlikely to have major impacts on theoretical mass-radius relations, this is justified as long as the measurement uncertainties are large. However, upcoming missions, such as the PLATO mission (scheduled launch 2026), are envisaged to reach a precision of up to ≈3 and ≈10% for radii and masses, respectively. As a result, we may soon enter an area in exoplanetary research where various physical and chemical effects such as hydration can no longer be ignored. Aims. Our goal is to construct interior models for planets that include reliable prescriptions for hydration of the cores and mantles. These models can be used to refine previous results for which hydration has been neglected and to guide future characterization of observed exoplanets. Methods. We have developed numerical tools to solve for the structure of multi-layered planets with variable boundary conditions and compositions. Here we consider three types of planets: dry interiors, hydrated interiors, and dry interiors plus surface ocean, where the ocean mass fraction corresponds to the mass fraction of the H2O equivalent in the hydrated case. Results. We find H and OH storage capacities in the hydrated planets equivalent to 0−6 wt% H2O corresponding to up to ≈800 km deep ocean layers. In the mass range 0.1 ≤ MM≤ 3, the effect of hydration on the total radius is found to be ≤2.5%, whereas the effect of separation into an isolated surface ocean is ≤5%. Furthermore, we find that our results are very sensitive to the bulk composition.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3