The Gaia-ESO survey: 3D NLTE abundances in the open cluster NGC 2420 suggest atomic diffusion and turbulent mixing are at the origin of chemical abundance variations

Author:

Semenova Ekaterina,Bergemann Maria,Deal Morgan,Serenelli Aldo,Hansen Camilla Juul,Gallagher Andrew J.,Bayo Amelia,Bensby Thomas,Bragaglia Angela,Carraro Giovanni,Morbidelli Lorenzo,Pancino Elena,Smiljanic Rodolfo

Abstract

Context. Atomic diffusion and mixing processes in stellar interiors influence the structure and the surface composition of stars. Some of these processes cannot yet be modelled from the first principles, and they require calibrations. This limits their applicability in stellar models used for studies of stellar populations and Galactic evolution. Aims. Our main goal is to put constraints on the stellar structure and evolution models using new refined measurements of the chemical composition in stars of a Galactic open cluster. Methods. We used medium-resolution, 19 200 ≤ R ≤ 21 500, optical spectra of stars in the open cluster NGC 2420 obtained within the Gaia-ESO survey. The sample covers all evolutionary stages from the main sequence to the red giant branch. Stellar parameters were derived using a combined Bayesian analysis of spectra, 2MASS photometry, and astrometric data from Gaia DR2. The abundances of Mg, Ca, Fe, and Li were determined from non-local thermodynamic equilibrium (NLTE) synthetic spectra, which were computed using one-dimensional (1D) and averaged three-dimensional (3D) model atmospheres. We compare our results with a grid of Code d’Evolution Stellaire Adaptatif et Modulaire (CESTAM) stellar evolution models, which include atomic diffusion, turbulent, and rotational mixing. Results. We find prominent evolutionary trends in the abundances of Fe, Ca, Mg, and Li with the mass of the stars in the cluster. Furthermore, Fe, Mg, and Ca show a depletion at the cluster turn-off, but the abundances gradually increase and flatten near the base of the red giant branch. The abundance trend for Li displays a signature of rotational mixing on the main sequence and abrupt depletion on the sub-giant branch, which is caused by advection of Li-poor material to the surface. The analysis of abundances combined with the CESTAM model predictions allows us to place limits on the parameter space of the models and to constrain the zone in the stellar interior, where turbulent mixing takes place.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3