Is HR 6819 a triple system containing a black hole?

Author:

Bodensteiner J.ORCID,Shenar T.,Mahy L.,Fabry M.ORCID,Marchant P.ORCID,Abdul-Masih M.ORCID,Banyard G.ORCID,Bowman D. M.ORCID,Dsilva K.ORCID,Frost A. J.ORCID,Hawcroft C.ORCID,Reggiani M.ORCID,Sana H.ORCID

Abstract

Context. HR 6819 was recently proposed to be a triple system consisting of an inner B-type giant plus black hole (BH) binary with an orbital period of 40 d and an outer Be tertiary. This interpretation is mainly based on two inferences: that the emission attributed to the outer Be star is stationary and that the inner star, which is used as mass calibrator for the BH, is a B-type giant. Aims. We re-investigate the properties of HR 6819 to search for a possibly simpler alternative explanation for HR 6819, which does not invoke the presence of a triple system with a BH in the inner binary. Methods. Based on an orbital analysis, the disentangling of the spectra of the two visible components and the atmosphere analysis of the disentangled spectra, we investigate the configuration of the system and the nature of its components. Results. Disentangling implies that the Be component is not a static tertiary, but rather a component of the binary in the 40 d orbit. The inferred radial velocity amplitudes of K1 = 60.4 ± 1.0 km s−1 for the B-type primary and K2 = 4.0 ± 0.8 km s−1 for the Be-type secondary imply an extreme mass ratio of M2/M1 = 15 ± 3. We find that the B-type primary, which we estimate to contribute about 45% to the optical flux, has an effective temperature of Teff = 16 ± 1 kK and a surface gravity of log g = 2.8 ± 0.2 [cgs], while the Be secondary, which contributes about 55% to the optical flux, has Teff = 20 ± 2 kK and log g = 4.0 ± 0.3 [cgs]. We infer spectroscopic masses of 0.4−0.1+0.3and 6−3+5 for the primary and secondary which agree well with the dynamical masses for an inclination of i = 32°. This indicates that the primary might be a stripped star rather than a B-type giant. Evolutionary modelling suggests that a possible progenitor system would be a tight (Pi ≈ 2 d) B+B binary system that experienced conservative mass transfer. While the observed nitrogen enrichment of the primary conforms with the predictions of the evolutionary models, we find no indications for the predicted He enrichment. Conclusions. We suggest that HR 6819 is a binary system consisting of a stripped B-type primary and a rapidly-rotating Be star that formed from a previous mass-transfer event. In the framework of this interpretation, HR 6819 does not contain a BH. Interferometry can distinguish between these two scenarios by providing an independent measurement of the separation between the visible components.

Funder

H2020 European Research Council

Fonds Wetenschappelijk Onderzoek

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Evolution of Massive Binary Stars;Annual Review of Astronomy and Astrophysics;2024-09-13

2. Evolutionary nature of puffed-up stripped star binaries and their occurrence in stellar populations;Astronomy & Astrophysics;2024-07

3. A magnetic massive star has experienced a stellar merger;Science;2024-04-12

4. Autonomous disentangling for spectroscopic surveys;Monthly Notices of the Royal Astronomical Society;2024-04-10

5. Forming merging double compact objects with stable mass transfer;Astronomy & Astrophysics;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3