Autonomous disentangling for spectroscopic surveys

Author:

Seeburger Rhys1ORCID,Rix Hans-Walter1,El-Badry Kareem12ORCID,Xiang Maosheng34,Fouesneau Morgan1ORCID

Affiliation:

1. Max Planck Institute for Astronomy , Heidelberg 69117 , Germany

2. California Institute of Technology , Pasadena 91125, CA, USA

3. National Astronomical Observatories, Chinese Academy of Sciences , Beijing 100101 , China

4. Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University , Beijing 102206 , China

Abstract

ABSTRACT A suite of spectroscopic surveys is producing vast sets of stellar spectra with the goal of advancing stellar physics and Galactic evolution by determining their basic physical properties. A substantial fraction of these stars are in binary systems, but almost all large-survey modelling pipelines treat them as single stars. For sets of multi-epoch spectra, spectral disentangling is a powerful technique to recover or constrain the individual components’ spectra of a multiple system. So far, this approach has focused on small samples or individual objects, usually with high-resolution ($R \gtrsim 10.000$) spectra and many epochs ($\gtrsim 8$). Here, we present a disentangling implementation that accounts for several aspects of few-epoch spectra from large surveys: that vast sample sizes require automatic determination of starting guesses; that some of the most extensive spectroscopic surveys have a resolution of only $\approx 2000$; that few epochs preclude unique orbit fitting; that one needs effective regularization of the disentangled solution to ensure resulting spectra are smooth. We describe the implementation of this code and show with simulated spectra how well spectral recovery can work for hot and cool stars at $R \approx 2000$. Moreover, we verify the code on two established binary systems, the ‘Unicorn’ and ‘Giraffe’. This code can serve to explore new regimes in survey disentangling in search of massive stars with massive dark companions, for example, the $\gtrsim 200\,000$ hot stars of the SDSS-V survey.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3