The Solar Orbiter Science Activity Plan

Author:

Zouganelis I.ORCID,De Groof A.,Walsh A. P.,Williams D. R.,Müller D.,St Cyr O. C.,Auchère F.,Berghmans D.,Fludra A.,Horbury T. S.,Howard R. A.,Krucker S.,Maksimovic M.,Owen C. J.,Rodríguez-Pacheco J.,Romoli M.,Solanki S. K.,Watson C.,Sanchez L.,Lefort J.,Osuna P.,Gilbert H. R.,Nieves-Chinchilla T.,Abbo L.,Alexandrova O.,Anastasiadis A.,Andretta V.,Antonucci E.,Appourchaux T.,Aran A.,Arge C. N.,Aulanier G.,Baker D.,Bale S. D.,Battaglia M.,Bellot Rubio L.,Bemporad A.,Berthomier M.,Bocchialini K.,Bonnin X.,Brun A. S.,Bruno R.,Buchlin E.,Büchner J.,Bucik R.,Carcaboso F.,Carr R.,Carrasco-Blázquez I.,Cecconi B.,Cernuda Cangas I.,Chen C. H. K.,Chitta L. P.,Chust T.,Dalmasse K.,D’Amicis R.,Da Deppo V.,De Marco R.,Dolei S.,Dolla L.,Dudok de Wit T.,van Driel-Gesztelyi L.,Eastwood J. P.,Espinosa Lara F.,Etesi L.,Fedorov A.,Félix-Redondo F.,Fineschi S.,Fleck B.,Fontaine D.,Fox N. J.,Gandorfer A.,Génot V.,Georgoulis M. K.,Gissot S.,Giunta A.,Gizon L.,Gómez-Herrero R.,Gontikakis C.,Graham G.,Green L.,Grundy T.,Haberreiter M.,Harra L. K.,Hassler D. M.,Hirzberger J.,Ho G. C.,Hurford G.,Innes D.,Issautier K.,James A. W.,Janitzek N.,Janvier M.,Jeffrey N.,Jenkins J.,Khotyaintsev Y.,Klein K.-L.,Kontar E. P.,Kontogiannis I.,Krafft C.,Krasnoselskikh V.,Kretzschmar M.,Labrosse N.,Lagg A.,Landini F.,Lavraud B.,Leon I.,Lepri S. T.,Lewis G. R.,Liewer P.,Linker J.,Livi S.,Long D. M.,Louarn P.,Malandraki O.,Maloney S.,Martinez-Pillet V.,Martinovic M.,Masson A.,Matthews S.,Matteini L.,Meyer-Vernet N.,Moraitis K.,Morton R. J.,Musset S.,Nicolaou G.,Nindos A.,O’Brien H.,Orozco Suarez D.,Owens M.,Pancrazzi M.,Papaioannou A.,Parenti S.,Pariat E.,Patsourakos S.,Perrone D.,Peter H.,Pinto R. F.,Plainaki C.,Plettemeier D.,Plunkett S. P.,Raines J. M.,Raouafi N.,Reid H.,Retino A.,Rezeau L.,Rochus P.,Rodriguez L.,Rodriguez-Garcia L.,Roth M.,Rouillard A. P.,Sahraoui F.,Sasso C.,Schou J.,Schühle U.,Sorriso-Valvo L.,Soucek J.,Spadaro D.,Stangalini M.,Stansby D.,Steller M.,Strugarek A.,Štverák Š.,Susino R.,Telloni D.,Terasa C.,Teriaca L.,Toledo-Redondo S.,del Toro Iniesta J. C.,Tsiropoula G.,Tsounis A.,Tziotziou K.,Valentini F.,Vaivads A.,Vecchio A.,Velli M.,Verbeeck C.,Verdini A.,Verscharen D.,Vilmer N.,Vourlidas A.,Wicks R.,Wimmer-Schweingruber R. F.,Wiegelmann T.,Young P. R.,Zhukov A. N.

Abstract

Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission’s science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit’s science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter’s SAP through a series of examples and the strategy being followed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3