Sausage, kink, and fluting magnetohydrodynamic wave modes identified in solar magnetic pores by Solar Orbiter/PHI

Author:

Jafarzadeh S.ORCID,Schiavo L. A. C. A.ORCID,Fedun V.ORCID,Solanki S. K.ORCID,Stangalini M.ORCID,Calchetti D.ORCID,Verth G.ORCID,Jess D. B.ORCID,Grant S. D. T.ORCID,Ballai I.ORCID,Gafeira R.ORCID,Keys P. H.ORCID,Fleck B.ORCID,Morton R. J.ORCID,Browning P. K.,Silva S. S. A.ORCID,Appourchaux T.,Gandorfer A.ORCID,Gizon L.ORCID,Hirzberger J.,Kahil F.ORCID,Orozco Suárez D.ORCID,Schou J.ORCID,Strecker H.ORCID,del Toro Iniesta J. C.ORCID,Valori G.ORCID,Volkmer R.,Woch J.ORCID

Abstract

Solar pores are intense concentrations of magnetic flux that emerge through the solar photosphere. When compared to sunspots, they are much smaller in diameter and can therefore be affected and buffeted by neighbouring granular activity to generate significant magnetohydrodynamic (MHD) wave energy flux within their confines. However, observations of solar pores from ground-based telescope facilities may struggle to capture subtle motions that are synonymous with higher-order MHD wave signatures because of the seeing effects that are produced in the Earth’s atmosphere. Hence, we exploited timely seeing-free and high-quality observations of four small magnetic pores from the High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (PHI) on board the Solar Orbiter spacecraft during its first close perihelion passage in March 2022 (at a distance of 0.5 au from the Sun). Through acquisition of data under stable observing conditions, we were able to measure the area fluctuations and horizontal displacements of the solar pores. Cross correlations between perturbations in intensity, area, line-of-sight velocity, and magnetic fields, coupled with the first-time application of novel proper orthogonal decomposition techniques on the boundary oscillations, provided a comprehensive diagnosis of the embedded MHD waves as sausage and kink modes. Additionally, the previously elusive m = 2 fluting mode is identified in the most magnetically isolated of the four pores. An important consideration lies in how the identified wave modes contribute to the transfer of energy into the upper solar atmosphere. Approximately 56%, 72%, 52%, and 34% of the total wave energy of the four pores we examined is associated with the identified sausage modes and about 23%, 17%, 39%, and 49% with their kink modes, while the first pore also receives a contribution of about 11% linked to the fluting mode. This study reports the first-time identification of concurrent sausage, kink, and fluting MHD wave modes in solar magnetic pores.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3