Magnetohydrodynamic Wave Mode Identification in Circular and Elliptical Sunspot Umbrae: Evidence for High-order Modes

Author:

Albidah A. B.ORCID,Fedun V.ORCID,Aldhafeeri A. A.ORCID,Ballai I.ORCID,Brevis W.ORCID,Jess D. B.ORCID,Higham J.ORCID,Stangalini M.ORCID,Silva S. S. A.ORCID,Verth G.ORCID

Abstract

Abstract In this paper, we provide clear direct evidence of multiple concurrent higher-order magnetohydrodynamic (MHD) modes in circular and elliptical sunspots by applying both proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) techniques on solar observational data. These techniques are well documented and validated in the areas of fluid mechanics, hydraulics, and granular flows but are relatively new to the field of solar physics. While POD identifies modes based on orthogonality in space and provides a clear ranking of modes in terms of their contribution to the variance of the signal, DMD resolves modes that are orthogonal in time. The clear presence of the fundamental slow sausage and kink body modes, as well as higher-order slow sausage and kink body modes, have been identified using POD and DMD analysis of the chromospheric Hα line at 6562.808 Å for both the circular and elliptical sunspots. Additionally, for the various slow body modes, evidence for the presence of the fast surface kink mode was found in the circular sunspot. All of the MHD mode patterns were cross-correlated with their theoretically predicted counterparts, and we demonstrated that ellipticity cannot be neglected when interpreting MHD wave modes. The higher-order MHD wave modes are even more sensitive to irregularities in umbral cross-sectional shapes; hence, this must be taken into account for more accurate modeling of the modes in sunspots and pores.

Funder

UKRI STFC

The Royal Society, International Exchanges Scheme

UKRI ∣ Science and Technology Facilities Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3